Suppr超能文献

果蝇醛缩酶中的一种突变会导致温度敏感性麻痹、寿命缩短和神经退行性变。

A mutation in Drosophila Aldolase causes temperature-sensitive paralysis, shortened lifespan, and neurodegeneration.

作者信息

Miller Daniel, Hannon Colleen, Ganetzky Barry

机构信息

Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

J Neurogenet. 2012 Sep;26(3-4):317-27. doi: 10.3109/01677063.2012.706346. Epub 2012 Aug 13.

Abstract

We describe the characterization of m4, an autosomal recessive, temperature-sensitive paralytic mutant in Drosophila that is associated with shortened lifespan and neurodegeneration. Deletion mapping places the mutation in the gene encoding the glycolytic enzyme, Aldolase. The mutant enzyme contains a single amino acid substitution, which results in decreased steady-state levels of Aldolase with a consequent reduction in adenosine triphosphate (ATP) levels. Transgenic-rescue experiments with a genomic construct containing the entire Aldolase gene confirm that paralysis, reduced lifespan, and neurodegeneration all result from the same mutation. Tissue-specific rescue and RNA interference (RNAi) knockdown experiments indicate that Aldolase function (and presumably glycolysis) is important both in neurons and in glia for normal lifespan and neuronal maintenance over time. Impaired glycolysis in neurons can apparently be rescued in part by glycolytically active glia. However, this rescue may depend on the exact physiological state of the neurons and may also vary in different subsets of neurons. Further studies of m4 and related mutants in Drosophila should help elucidate the connections between energy production and utilization in glia and neurons and lead to better understanding of how metabolic defects impair neuronal function and maintenance.

摘要

我们描述了果蝇中一种常染色体隐性、温度敏感的麻痹突变体m4的特征,该突变体与寿命缩短和神经退行性变有关。缺失作图将该突变定位到编码糖酵解酶醛缩酶的基因中。突变酶含有一个单一氨基酸取代,这导致醛缩酶的稳态水平降低,进而导致三磷酸腺苷(ATP)水平下降。用包含整个醛缩酶基因的基因组构建体进行的转基因拯救实验证实,麻痹、寿命缩短和神经退行性变均由同一突变引起。组织特异性拯救和RNA干扰(RNAi)敲低实验表明,醛缩酶功能(可能还有糖酵解)对于神经元和神经胶质细胞的正常寿命以及神经元随时间的维持都很重要。神经元中糖酵解受损显然可以部分地由具有糖酵解活性的神经胶质细胞拯救。然而,这种拯救可能取决于神经元的确切生理状态,并且在不同的神经元亚群中也可能有所不同。对果蝇中m4及相关突变体的进一步研究应有助于阐明神经胶质细胞和神经元中能量产生与利用之间的联系,并有助于更好地理解代谢缺陷如何损害神经元功能和维持。

相似文献

3
A restricted level of PQBP1 is needed for the best longevity of Drosophila.果蝇的最佳长寿需要限制 PQBP1 的水平。
Neurobiol Aging. 2013 Jan;34(1):356.e11-20. doi: 10.1016/j.neurobiolaging.2012.07.015. Epub 2012 Aug 15.

引用本文的文献

本文引用的文献

4
Energy metabolism in amyotrophic lateral sclerosis.肌萎缩侧索硬化症中的能量代谢。
Lancet Neurol. 2011 Jan;10(1):75-82. doi: 10.1016/S1474-4422(10)70224-6. Epub 2010 Oct 27.
5
Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model.阿尔茨海默病小鼠模型中突触线粒体的早期缺陷。
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18670-5. doi: 10.1073/pnas.1006586107. Epub 2010 Oct 11.
8
Mitochondrial dysfunction in amyotrophic lateral sclerosis.肌萎缩侧索硬化症中的线粒体功能障碍
Biochim Biophys Acta. 2010 Jan;1802(1):45-51. doi: 10.1016/j.bbadis.2009.08.012. Epub 2009 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验