Suppr超能文献

一种计算方法,用于理解正常和衰竭心脏中的心脏机电激活顺序,并将其转化为 CRT 的临床实践。

A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of CRT.

机构信息

Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Prog Biophys Mol Biol. 2012 Oct-Nov;110(2-3):372-9. doi: 10.1016/j.pbiomolbio.2012.07.009. Epub 2012 Aug 1.

Abstract

Cardiac resynchronization therapy (CRT) is an established clinical treatment modality that aims to recoordinate contraction of the heart in dyssynchrous heart failure (DHF) patients. Although CRT reduces morbidity and mortality, a significant percentage of CRT patients fail to respond to the therapy, reflecting an insufficient understanding of the electromechanical activity of the DHF heart. Computational models of ventricular electromechanics are now poised to fill this knowledge gap and provide a comprehensive characterization of the spatiotemporal electromechanical interactions in the normal and DHF heart. The objective of this paper is to demonstrate the powerful utility of computational models of ventricular electromechanics in characterizing the relationship between the electrical and mechanical activation in the DHF heart, and how this understanding can be utilized to devise better CRT strategies. The computational research presented here exploits knowledge regarding the three dimensional distribution of the electromechanical delay, defined as the time interval between myocyte depolarization and onset of myofiber shortening, in determining the optimal location of the LV pacing electrode for CRT. The simulation results shown here also suggest utilizing myocardial efficiency and regional energy consumption as a guide to optimize CRT.

摘要

心脏再同步治疗(CRT)是一种已确立的临床治疗方法,旨在协调不同步心力衰竭(DHF)患者的心脏收缩。尽管 CRT 降低了发病率和死亡率,但仍有相当一部分 CRT 患者对治疗无反应,这反映出对 DHF 心脏的机电活动的理解不足。心室机电计算模型现在正准备填补这一知识空白,并提供对正常和 DHF 心脏的时空机电相互作用的全面描述。本文的目的是展示心室机电计算模型在描述 DHF 心脏中电机械激活之间关系方面的强大功能,并展示如何利用这种理解来设计更好的 CRT 策略。这里介绍的计算研究利用了关于机电延迟的三维分布的知识,机电延迟定义为心肌细胞去极化和肌纤维缩短开始之间的时间间隔,以确定 LV 起搏电极的最佳 CRT 位置。这里显示的模拟结果还表明,利用心肌效率和区域能量消耗作为指导来优化 CRT。

相似文献

2
Imaging the Propagation of the Electromechanical Wave in Heart Failure Patients with Cardiac Resynchronization Therapy.
Pacing Clin Electrophysiol. 2017 Jan;40(1):35-45. doi: 10.1111/pace.12964. Epub 2016 Dec 2.
4
Computational Prediction of the Combined Effect of CRT and LVAD on Cardiac Electromechanical Delay in LBBB and RBBB.
Comput Math Methods Med. 2018 Nov 14;2018:4253928. doi: 10.1155/2018/4253928. eCollection 2018.
5
Tailor-made heart simulation predicts the effect of cardiac resynchronization therapy in a canine model of heart failure.
Med Image Anal. 2016 Jul;31:46-62. doi: 10.1016/j.media.2016.02.003. Epub 2016 Feb 26.
6
Electromechanical dyssynchrony and resynchronization of the failing heart.
Circ Res. 2013 Aug 30;113(6):765-76. doi: 10.1161/CIRCRESAHA.113.300270.
9
His-Optimized Cardiac Resynchronization Therapy to Maximize Electrical Resynchronization: A Feasibility Study.
Circ Arrhythm Electrophysiol. 2019 Feb;12(2):e006934. doi: 10.1161/CIRCEP.118.006934.
10
A study of mechanical optimization strategy for cardiac resynchronization therapy based on an electromechanical model.
Comput Math Methods Med. 2012;2012:948781. doi: 10.1155/2012/948781. Epub 2012 Oct 16.

引用本文的文献

1
Use of acoustic cardiography to assess left ventricular electromechanical synchronization during left bundle branch pacing.
Heart Rhythm O2. 2023 Sep 11;4(10):632-640. doi: 10.1016/j.hroo.2023.08.009. eCollection 2023 Oct.
4
Optimization of cardiac resynchronization therapy based on a cardiac electromechanics-perfusion computational model.
Comput Biol Med. 2022 Feb;141:105050. doi: 10.1016/j.compbiomed.2021.105050. Epub 2021 Nov 19.
5
Sensitivity Analysis of Ion Channel Conductance on Myocardial Electromechanical Delay: Computational Study.
Front Physiol. 2021 Aug 27;12:697693. doi: 10.3389/fphys.2021.697693. eCollection 2021.
7
Patient-specific heart simulation can identify non-responders to cardiac resynchronization therapy.
Heart Vessels. 2020 Aug;35(8):1135-1147. doi: 10.1007/s00380-020-01577-1. Epub 2020 Mar 12.
9
Computational models in cardiology.
Nat Rev Cardiol. 2019 Feb;16(2):100-111. doi: 10.1038/s41569-018-0104-y.
10
A review of inflammatory mechanism in airway diseases.
Inflamm Res. 2019 Jan;68(1):59-74. doi: 10.1007/s00011-018-1191-2. Epub 2018 Oct 10.

本文引用的文献

2
Endocardial left ventricular pacing improves cardiac resynchronization therapy in chronic asynchronous infarction and heart failure models.
Circ Arrhythm Electrophysiol. 2012 Feb;5(1):191-200. doi: 10.1161/CIRCEP.111.965814. Epub 2011 Nov 7.
3
Biophysical modeling to simulate the response to multisite left ventricular stimulation using a quadripolar pacing lead.
Pacing Clin Electrophysiol. 2012 Feb;35(2):204-14. doi: 10.1111/j.1540-8159.2011.03243.x. Epub 2011 Oct 31.
4
Mechanism of prolonged electromechanical delay in late activated myocardium during left bundle branch block.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2334-43. doi: 10.1152/ajpheart.00644.2011. Epub 2011 Oct 7.
5
Improvement in pump function with endocardial biventricular pacing increases with activation time at the left ventricular pacing site in failing canine hearts.
Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1447-55. doi: 10.1152/ajpheart.00295.2011. Epub 2011 Jul 22.
7
Mapping of cardiac electrical activation with electromechanical wave imaging: an in silico-in vivo reciprocity study.
Heart Rhythm. 2011 May;8(5):752-9. doi: 10.1016/j.hrthm.2010.12.034. Epub 2010 Dec 23.
10
Dyssynchrony indices to predict response to cardiac resynchronization therapy: a comprehensive prospective single-center study.
Circ Heart Fail. 2010 Sep;3(5):565-73. doi: 10.1161/CIRCHEARTFAILURE.108.848085. Epub 2010 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验