Suppr超能文献

从真核生物基因组中预测抗菌肽:开发抗生素的计算策略。

Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics.

机构信息

Biological Sciences Institute, Universidade de Brasília, Brasília - DF 70910-900, Brazil.

出版信息

Peptides. 2012 Oct;37(2):301-8. doi: 10.1016/j.peptides.2012.07.021. Epub 2012 Aug 3.

Abstract

A remarkable and intriguing challenge for the modern medicine consists in the development of alternative therapies to avoid the problem of microbial resistance. The cationic antimicrobial peptides present a promise to be used to develop more efficient drugs applied to human health. The in silico analysis of genomic databases is a strategy utilized to predict peptides of therapeutic interest. Once the main antimicrobial peptides' physical-chemical properties are already known, the correlation of those features to search on these databases is a tool to shorten identifying new antibiotics. This study reports the identification of antimicrobial peptides by theoretical analyses by scanning the Paracoccidioides brasiliensis transcriptome and the human genome databases. The identified sequences were synthesized and investigated for hemocompatibility and also antimicrobial activity. Two peptides presented antifungal activity against Candida albicans. Furthermore, three peptides exhibited antibacterial effects against Staphylococcus aureus and Escherichia coli; finally one of them presented high potential to kill both pathogens with superior activity in comparison to chloramphenicol. None of them showed toxicity to mammalian cells. In silico structural analyses were performed in order to better understand function-structure relation, clearly demonstrating the necessity of cationic peptide surfaces and the exposition of hydrophobic amino acid residues. In summary, our results suggest that the use of computational programs in order to identify and evaluate antimicrobial peptides from genomic databases is a remarkable tool that could be used to abbreviate the search of peptides with biotechnological potential from natural resources.

摘要

对于现代医学来说,一个显著而有趣的挑战是开发替代疗法,以避免微生物耐药性的问题。阳离子抗菌肽有望被用于开发更有效的药物,应用于人类健康。利用基因组数据库进行计算机分析是一种用于预测具有治疗潜力的肽的策略。一旦确定了主要抗菌肽的物理化学性质,就可以将这些特性与这些数据库进行关联,从而缩短寻找新抗生素的时间。本研究通过扫描巴西副球孢子菌转录组和人类基因组数据库进行理论分析,报告了抗菌肽的鉴定。鉴定出的序列被合成并研究了它们的血液相容性和抗菌活性。有两个肽对白色念珠菌具有抗真菌活性。此外,有三个肽对金黄色葡萄球菌和大肠杆菌具有抗菌作用;其中一个肽对两种病原体具有很高的杀灭活性,活性明显优于氯霉素。它们都没有对哺乳动物细胞表现出毒性。为了更好地理解功能-结构关系,进行了计算机结构分析,清楚地表明了阳离子肽表面和疏水性氨基酸残基暴露的必要性。总之,我们的结果表明,使用计算程序从基因组数据库中识别和评估抗菌肽是一种非常有用的工具,可以缩短从天然资源中寻找具有生物技术潜力的肽的时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验