Suppr超能文献

海洋栖热菌糖激酶组的多样性和多功能性。

Diversity and versatility of the Thermotoga maritima sugar kinome.

机构信息

Sanford-Burnham Medical Research Institute, La Jolla, California, USA.

出版信息

J Bacteriol. 2012 Oct;194(20):5552-63. doi: 10.1128/JB.01136-12. Epub 2012 Aug 10.

Abstract

Sugar phosphorylation is an indispensable committed step in a large variety of sugar catabolic pathways, which are major suppliers of carbon and energy in heterotrophic species. Specialized sugar kinases that are indispensable for most of these pathways can be utilized as signature enzymes for the reconstruction of carbohydrate utilization machinery from microbial genomic and metagenomic data. Sugar kinases occur in several structurally distinct families with various partially overlapping as well as yet unknown substrate specificities that often cannot be accurately assigned by homology-based techniques. A subsystems-based metabolic reconstruction combined with the analysis of genome context and followed by experimental testing of predicted gene functions is a powerful approach of functional gene annotation. Here we applied this integrated approach for functional mapping of all sugar kinases constituting an extensive and diverse sugar kinome in the thermophilic bacterium Thermotoga maritima. Substrate preferences of 14 kinases mainly from the FGGY and PfkB families were inferred by bioinformatics analysis and biochemically characterized by screening with a panel of 45 different carbohydrates. Most of the analyzed enzymes displayed narrow substrate preferences corresponding to their predicted physiological roles in their respective catabolic pathways. The observed consistency supports the choice of kinases as signature enzymes for genomics-based identification and reconstruction of sugar utilization pathways. Use of the integrated genomic and experimental approach greatly speeds up the identification of the biochemical function of unknown proteins and improves the quality of reconstructed pathways.

摘要

糖磷酸化是各种糖分解代谢途径中不可或缺的关键步骤,这些途径是异养生物中碳和能量的主要来源。对于大多数这些途径来说,专门的糖激酶是必不可少的,它们可以作为特征酶,用于从微生物基因组和宏基因组数据中重建碳水化合物利用机制。糖激酶存在于几个结构上不同的家族中,具有不同的部分重叠以及尚未知的底物特异性,这些特异性通常不能通过基于同源性的技术准确分配。基于亚系统的代谢重建,结合基因组上下文的分析,以及对预测基因功能的实验测试,是功能基因注释的一种强大方法。在这里,我们应用这种综合方法来对嗜热细菌 Thermotoga maritima 中广泛而多样的糖激酶家族进行功能映射。通过生物信息学分析推断了 14 种主要来自 FGGY 和 PfkB 家族的激酶的底物偏好,并通过用 45 种不同碳水化合物进行筛选来进行生化特性分析。分析的大多数酶显示出狭窄的底物偏好,这与其在各自分解代谢途径中的预测生理作用相对应。观察到的一致性支持了将激酶作为特征酶用于基于基因组学的糖利用途径的鉴定和重建的选择。综合基因组学和实验方法的使用大大加快了对未知蛋白生化功能的鉴定,并提高了重建途径的质量。

相似文献

1
Diversity and versatility of the Thermotoga maritima sugar kinome.
J Bacteriol. 2012 Oct;194(20):5552-63. doi: 10.1128/JB.01136-12. Epub 2012 Aug 10.
2
Tagaturonate-fructuronate epimerase UxaE, a novel enzyme in the hexuronate catabolic network in Thermotoga maritima.
Environ Microbiol. 2012 Nov;14(11):2920-34. doi: 10.1111/j.1462-2920.2012.02856.x. Epub 2012 Aug 23.
3
Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum.
Nucleic Acids Res. 2013 Jan;41(2):790-803. doi: 10.1093/nar/gks1184. Epub 2012 Dec 2.
5
Genomic encyclopedia of sugar utilization pathways in the Shewanella genus.
BMC Genomics. 2010 Sep 13;11:494. doi: 10.1186/1471-2164-11-494.
6
Glycerate 2-kinase of Thermotoga maritima and genomic reconstruction of related metabolic pathways.
J Bacteriol. 2008 Mar;190(5):1773-82. doi: 10.1128/JB.01469-07. Epub 2007 Dec 21.
7
Novel inositol catabolic pathway in Thermotoga maritima.
Environ Microbiol. 2013 Aug;15(8):2254-66. doi: 10.1111/1462-2920.12096. Epub 2013 Feb 27.
9
Screening the Thermotoga maritima genome for new wide-spectrum nucleoside and nucleotide kinases.
J Biol Chem. 2023 Jun;299(6):104746. doi: 10.1016/j.jbc.2023.104746. Epub 2023 Apr 23.
10
Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima.
Front Microbiol. 2013 Aug 23;4:244. doi: 10.3389/fmicb.2013.00244. eCollection 2013.

引用本文的文献

2
Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile .
mSystems. 2021 Jun 29;6(3):e0134520. doi: 10.1128/mSystems.01345-20. Epub 2021 Jun 1.
3
A 'Split-Gene' Transketolase From the Hyper-Thermophilic Bacterium : Structure and Biochemical Characterization.
Front Microbiol. 2020 Oct 30;11:592353. doi: 10.3389/fmicb.2020.592353. eCollection 2020.
4
High Conversion of D-Fructose into D-Allulose by Enzymes Coupling with an ATP Regeneration System.
Mol Biotechnol. 2019 Jun;61(6):432-441. doi: 10.1007/s12033-019-00174-6.
5
The uridylyltransferase GlnD and tRNA modification GTPase MnmE allosterically control folylpoly-γ-glutamate synthase FolC.
J Biol Chem. 2018 Oct 5;293(40):15725-15732. doi: 10.1074/jbc.RA118.004425. Epub 2018 Aug 8.
6
Identification of a pyrophosphate-dependent kinase and its donor selectivity determinants.
Nat Commun. 2018 May 2;9(1):1765. doi: 10.1038/s41467-018-04201-z.
8
Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius.
J Ind Microbiol Biotechnol. 2017 Oct;44(10):1443-1458. doi: 10.1007/s10295-017-1968-2. Epub 2017 Aug 3.
10
Constraint-based models predict metabolic and associated cellular functions.
Nat Rev Genet. 2014 Feb;15(2):107-20. doi: 10.1038/nrg3643. Epub 2014 Jan 16.

本文引用的文献

1
The FGGY carbohydrate kinase family: insights into the evolution of functional specificities.
PLoS Comput Biol. 2011 Dec;7(12):e1002318. doi: 10.1371/journal.pcbi.1002318. Epub 2011 Dec 22.
2
GenBank.
Nucleic Acids Res. 2012 Jan;40(Database issue):D48-53. doi: 10.1093/nar/gkr1202. Epub 2011 Dec 5.
4
Genomic encyclopedia of sugar utilization pathways in the Shewanella genus.
BMC Genomics. 2010 Sep 13;11:494. doi: 10.1186/1471-2164-11-494.
6
The genus Thermotoga: recent developments.
Environ Technol. 2010 Sep;31(10):1169-81. doi: 10.1080/09593330.2010.484076.
7
RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W299-307. doi: 10.1093/nar/gkq531. Epub 2010 Jun 11.
8
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.
Syst Biol. 2010 May;59(3):307-21. doi: 10.1093/sysbio/syq010. Epub 2010 Mar 29.
10
MicrobesOnline: an integrated portal for comparative and functional genomics.
Nucleic Acids Res. 2010 Jan;38(Database issue):D396-400. doi: 10.1093/nar/gkp919. Epub 2009 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验