Burnham Institute for Medical Research, La Jolla, California 92037, USA.
BMC Genomics. 2010 Sep 13;11:494. doi: 10.1186/1471-2164-11-494.
Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments.
We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the Shewanella genus. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across Shewanella species providing insights into their ecophysiology and adaptive evolution. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars.Comparison of the reconstructed catabolic pathways with E. coli identified multiple differences that are manifested at various levels, from the presence or absence of certain sugar catabolic pathways, nonorthologous gene replacements and alternative biochemical routes to a different organization of transcription regulatory networks.
The reconstructed sugar catabolome in Shewanella spp includes 62 novel isofunctional families of enzymes, transporters, and regulators. In addition to improving our knowledge of genomics and functional organization of carbohydrate utilization in Shewanella, this study led to a substantial expansion of our current version of the Genomic Encyclopedia of Carbohydrate Utilization. A systematic and iterative application of this approach to multiple taxonomic groups of bacteria will further enhance it, creating a knowledge base adequate for the efficient analysis of any newly sequenced genome as well as of the emerging metagenomic data.
碳水化合物是许多细菌的主要碳源和能量来源。由于这些途径的组成部分经常发生变化,因此准确地预测具有完整基因组的不同细菌中的已知碳水化合物分解代谢途径是一项重大挑战。为了直接从其基因组序列重建任何微生物中碳水化合物利用机制这一具有实际和根本重要意义的挑战,我们将基于亚系统的比较基因组方法与通过生化、遗传和生理实验相结合对选定生物信息学预测进行实验验证相结合。
我们将这种综合方法应用于从希瓦氏菌属的 19 个基因组中系统地绘制碳水化合物利用途径。获得的糖利用基因组百科全书包括约 170 个蛋白家族(主要是代谢酶、转运蛋白和转录调控因子),跨越 17 个不同的途径,在希瓦氏菌属物种中呈镶嵌分布,提供了对其生态生理学和适应性进化的深入了解。表型分析显示,在整个测试菌株和糖矩阵中,预测表型和观察到的表型之间存在惊人的一致性,即能够将单个糖作为唯一的碳源和能量来源利用。将重建的分解代谢途径与大肠杆菌进行比较,发现了多种差异,这些差异表现在从某些糖分解代谢途径的存在或缺失、非同源基因替换和替代生化途径到转录调控网络的不同组织等各个层面。
希瓦氏菌属中重建的糖分解代谢物包括 62 种新型同工酶家族的酶、转运蛋白和调节剂。除了提高我们对希瓦氏菌碳水化合物利用的基因组学和功能组织的认识外,这项研究还导致我们当前版本的《碳水化合物利用基因组百科全书》得到了大幅扩展。将这种方法系统地、迭代地应用于多个细菌分类群将进一步增强它,为有效分析任何新测序的基因组以及新兴的宏基因组数据创建一个足够的知识库。