Mayourian Joshua, Sobie Eric A, Costa Kevin D
Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Methods Mol Biol. 2018;1816:17-35. doi: 10.1007/978-1-4939-8597-5_2.
Mathematical modeling is a powerful tool to study the complex and orchestrated biological process of cardiac electrical activity. By integrating experimental data from key components of cardiac electrophysiology, systems biology simulations can complement empirical findings, provide quantitative insight into physiological and pathophysiological mechanisms of action, and guide new hypotheses to better understand this complex biological system to develop novel cardiotherapeutic approaches. In this chapter, we briefly introduce in silico methods to describe the dynamics of physiological and pathophysiological single-cell and tissue-level cardiac electrophysiology. Using a "bottom-up" approach, we first describe the basis of ion channel mathematical models. Next, we discuss how the net flux of ions through such channels leads to changes in transmembrane voltage during cardiomyocyte action potentials. By applying these fundamentals, we describe how action potentials propagate in models of cardiac tissue. In addition, we provide case studies simulating single-cell and tissue-level arrhythmogenesis, as well as promising approaches to circumvent or overcome such adverse events. Overall, basic concepts and tools are discussed in this chapter as an accessible introduction to nonmathematicians to foster an understanding of electrophysiological modeling studies and help facilitate communication with dry lab colleagues and collaborators.
数学建模是研究心脏电活动这一复杂且协调的生物学过程的有力工具。通过整合心脏电生理学关键组成部分的实验数据,系统生物学模拟可以补充实证研究结果,对生理和病理生理作用机制提供定量见解,并引导新的假设以更好地理解这一复杂的生物系统,从而开发新的心脏治疗方法。在本章中,我们简要介绍用于描述生理和病理生理单细胞及组织水平心脏电生理学动态的计算机模拟方法。采用“自下而上”的方法,我们首先描述离子通道数学模型的基础。接下来,我们讨论离子通过此类通道的净通量如何导致心肌细胞动作电位期间跨膜电压的变化。通过应用这些基本原理,我们描述动作电位在心脏组织模型中的传播方式。此外,我们提供模拟单细胞和组织水平心律失常发生的案例研究,以及规避或克服此类不良事件的有前景的方法。总体而言,本章讨论基本概念和工具,作为面向非数学家的易懂介绍,以促进对电生理建模研究的理解,并有助于促进与非实验研究同事及合作者的交流。