Suppr超能文献

匹配观察性研究中敏感性分析的放大

Amplification of Sensitivity Analysis in Matched Observational Studies.

作者信息

Rosenbaum Paul R, Silber Jeffrey H

机构信息

University of Pennsylvania, Philadelphia.

出版信息

J Am Stat Assoc. 2009 Dec 1;104(488):1398-1405. doi: 10.1198/jasa.2009.tm08470.

Abstract

A sensitivity analysis displays the increase in uncertainty that attends an inference when a key assumption is relaxed. In matched observational studies of treatment effects, a key assumption in some analyses is that subjects matched for observed covariates are comparable, and this assumption is relaxed by positing a relevant covariate that was not observed and not controlled by matching. What properties would such an unobserved covariate need to have to materially alter the inference about treatment effects? For ease of calculation and reporting, it is convenient that the sensitivity analysis be of low dimension, perhaps indexed by a scalar sensitivity parameter, but for interpretation in specific contexts, a higher dimensional analysis may be of greater relevance. An amplification of a sensitivity analysis is defined as a map from each point in a low dimensional sensitivity analysis to a set of points, perhaps a 'curve,' in a higher dimensional sensitivity analysis such that the possible inferences are the same for all points in the set. Possessing an amplification, an investigator may calculate and report the low dimensional analysis, yet have available the interpretations of the higher dimensional analysis.

摘要

敏感性分析展示了在放松关键假设时,推理过程中不确定性的增加。在治疗效果的匹配观察性研究中,某些分析的一个关键假设是,为观察到的协变量进行匹配的受试者具有可比性,而通过假定一个未观察到且未通过匹配进行控制的相关协变量,可以放宽这一假设。这样一个未观察到的协变量需要具备哪些属性才能实质性地改变关于治疗效果的推断呢?为便于计算和报告,敏感性分析为低维形式较为方便,或许可由一个标量敏感性参数来索引,但对于特定背景下的解释而言,高维分析可能更具相关性。敏感性分析的放大被定义为从低维敏感性分析中的每个点到高维敏感性分析中的一组点(或许是一条“曲线”)的映射,使得该集合中所有点的可能推断都是相同的。拥有一个放大,研究者可以计算并报告低维分析结果,同时也能获得高维分析的解释。

相似文献

1
Amplification of Sensitivity Analysis in Matched Observational Studies.
J Am Stat Assoc. 2009 Dec 1;104(488):1398-1405. doi: 10.1198/jasa.2009.tm08470.
3
Causal conclusions are most sensitive to unobserved binary covariates.
Stat Med. 2006 Jul 15;25(13):2257-71. doi: 10.1002/sim.2344.
4
Calibrating sensitivity analyses to observed covariates in observational studies.
Biometrics. 2013 Dec;69(4):803-11. doi: 10.1111/biom.12101. Epub 2013 Nov 4.
5
Assessment of the E-value in the presence of bias amplification: a simulation study.
BMC Med Res Methodol. 2024 Mar 28;24(1):79. doi: 10.1186/s12874-024-02196-4.
6
Causal inference accounting for unobserved confounding after outcome regression and doubly robust estimation.
Biometrics. 2019 Jun;75(2):506-515. doi: 10.1111/biom.13001. Epub 2019 Mar 29.
8
Relaxed covariate overlap and margin-based causal effect estimation.
Stat Med. 2018 Dec 10;37(28):4252-4265. doi: 10.1002/sim.7919. Epub 2018 Aug 30.
9
10
Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies.
Biometrics. 2007 Jun;63(2):456-64. doi: 10.1111/j.1541-0420.2006.00717.x.

引用本文的文献

1
A Calibrated Sensitivity Analysis for Weighted Causal Decompositions.
Stat Med. 2025 Feb 28;44(5):e70010. doi: 10.1002/sim.70010.
2
Food choice mimicry on a large university campus.
PNAS Nexus. 2024 Nov 16;3(12):pgae517. doi: 10.1093/pnasnexus/pgae517. eCollection 2024 Dec.
3
The role of randomization inference in unraveling individual treatment effects in early phase vaccine trials.
Stat Commun Infect Dis. 2024 Jan;16(1). doi: 10.1515/scid-2024-0001. Epub 2024 Aug 12.
6
Testing Biased Randomization Assumptions and Quantifying Imperfect Matching and Residual Confounding in Matched Observational Studies.
J Comput Graph Stat. 2023;32(2):528-538. doi: 10.1080/10618600.2022.2116447. Epub 2022 Oct 19.
7
A Semiparametric Approach to Model-Based Sensitivity Analysis in Observational Studies.
J R Stat Soc Ser A Stat Soc. 2022 Dec;185(Suppl 2):S668-S691. doi: 10.1111/rssa.12946. Epub 2022 Nov 24.
8
Discovering Heterogeneous Exposure Effects Using Randomization Inference in Air Pollution Studies.
J Am Stat Assoc. 2021;116(534):569-580. doi: 10.1080/01621459.2020.1870476. Epub 2021 Feb 16.
9
The Association Between High CHADS-VASc Scores and Short and Long-Term Mortality for Coronary Care Unit Patients.
Clin Appl Thromb Hemost. 2022 Jan-Dec;28:10760296221117969. doi: 10.1177/10760296221117969.
10
The influence of social norms varies with "others" groups: Evidence from COVID-19 vaccination intentions.
Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2118770119. doi: 10.1073/pnas.2118770119. Epub 2022 Jul 11.

本文引用的文献

1
Impacts of age of onset of substance use disorders on risk of adult incarceration among disadvantaged urban youth: a propensity score matching approach.
Drug Alcohol Depend. 2008 May 1;95(1-2):1-13. doi: 10.1016/j.drugalcdep.2007.11.019. Epub 2008 Jan 31.
2
Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies.
Biometrics. 2007 Jun;63(2):456-64. doi: 10.1111/j.1541-0420.2006.00717.x.
3
Confidence intervals for uncommon but dramatic responses to treatment.
Biometrics. 2007 Dec;63(4):1164-71. doi: 10.1111/j.1541-0420.2007.00783.x. Epub 2007 Apr 9.
4
Does ovarian cancer treatment and survival differ by the specialty providing chemotherapy?
J Clin Oncol. 2007 Apr 1;25(10):1169-75. doi: 10.1200/JCO.2006.08.2933.
5
Causal conclusions are most sensitive to unobserved binary covariates.
Stat Med. 2006 Jul 15;25(13):2257-71. doi: 10.1002/sim.2344.
6
Preoperative antibiotics and mortality in the elderly.
Ann Surg. 2005 Jul;242(1):107-14. doi: 10.1097/01.sla.0000167850.49819.ea.
7
Statistical criticism.
Cancer. 1960 Mar-Apr;13:394-400. doi: 10.1002/1097-0142(196003/04)13:2<394::aid-cncr2820130225>3.0.co;2-m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验