Suppr超能文献

观察性研究中基于模型的敏感性分析的半参数方法

A Semiparametric Approach to Model-Based Sensitivity Analysis in Observational Studies.

作者信息

Zhang Bo, Tchetgen Tchetgen Eric J

机构信息

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, U.S.A.

Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, U.S.A.

出版信息

J R Stat Soc Ser A Stat Soc. 2022 Dec;185(Suppl 2):S668-S691. doi: 10.1111/rssa.12946. Epub 2022 Nov 24.

Abstract

When drawing causal inference from observational data, there is almost always concern about unmeasured confounding. One way to tackle this is to conduct a sensitivity analysis. One widely-used sensitivity analysis framework hypothesizes the existence of a scalar unmeasured confounder U and asks how the causal conclusion would change were U measured and included in the primary analysis. Work along this line often makes various parametric assumptions on U, for the sake of mathematical and computational convenience. In this article, we further this line of research by developing a valid sensitivity analysis that leaves the distribution of U unrestricted. Compared to many existing methods in the literature, our method allows for a larger and more flexible family of models, mitigates observable implications (Franks et al., 2019), and works seamlessly with any primary analysis that models the outcome regression parametrically. We construct both pointwise confidence intervals and confidence bands that are uniformly valid over a given sensitivity parameter space, thus formally accounting for unknown sensitivity parameters. We apply our proposed method on an influential yet controversial study of the causal relationship between war experiences and political activeness using observational data from Uganda.

摘要

从观察性数据中进行因果推断时,几乎总会担心存在未测量的混杂因素。解决这个问题的一种方法是进行敏感性分析。一种广泛使用的敏感性分析框架假设存在一个标量未测量混杂因素U,并询问如果U被测量并纳入主要分析,因果结论会如何变化。为了数学和计算上的便利,沿着这条思路开展的工作通常会对U做出各种参数假设。在本文中,我们通过开发一种有效的敏感性分析来推进这一研究方向,该分析不对U的分布进行限制。与文献中许多现有方法相比,我们的方法允许更大且更灵活的模型族,减轻了可观测的影响(弗兰克斯等人,2019),并且能与任何对结果回归进行参数建模的主要分析无缝配合。我们构建了在给定敏感性参数空间上一致有效的逐点置信区间和置信带,从而正式考虑了未知的敏感性参数。我们将所提出的方法应用于一项具有影响力但存在争议的研究,该研究利用乌干达的观察性数据探讨战争经历与政治积极性之间的因果关系。

相似文献

1
A Semiparametric Approach to Model-Based Sensitivity Analysis in Observational Studies.
J R Stat Soc Ser A Stat Soc. 2022 Dec;185(Suppl 2):S668-S691. doi: 10.1111/rssa.12946. Epub 2022 Nov 24.
2
Semiparametric sensitivity analysis: unmeasured confounding in observational studies.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae106.
3
Sensitivity analysis of unmeasured confounding in causal inference based on exponential tilting and super learner.
J Appl Stat. 2021 Nov 10;50(3):744-760. doi: 10.1080/02664763.2021.1999398. eCollection 2023.
5
Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.
J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540. doi: 10.1111/rssb.12361. Epub 2020 Jan 22.
6
A flexible, interpretable framework for assessing sensitivity to unmeasured confounding.
Stat Med. 2016 Sep 10;35(20):3453-70. doi: 10.1002/sim.6973. Epub 2016 May 3.
7
Sensitivity Analysis Without Assumptions.
Epidemiology. 2016 May;27(3):368-77. doi: 10.1097/EDE.0000000000000457.
9
Assessing the impact of unmeasured confounding for binary outcomes using confounding functions.
Int J Epidemiol. 2017 Aug 1;46(4):1303-1311. doi: 10.1093/ije/dyx023.
10
Bayesian sensitivity analysis for unmeasured confounding in observational studies.
Stat Med. 2007 May 20;26(11):2331-47. doi: 10.1002/sim.2711.

引用本文的文献

1
Role of placebo samples in observational studies.
J Causal Inference. 2025 Jan;13(1). doi: 10.1515/jci-2023-0020. Epub 2025 Mar 5.
2
Sensitivity analysis for causality in observational studies for regulatory science.
J Clin Transl Sci. 2023 Dec 5;7(1):e267. doi: 10.1017/cts.2023.688. eCollection 2023.
3
Measured and accounted-for confounding in pharmacoepidemiologic studies: Some thoughts for practitioners.
Pharmacoepidemiol Drug Saf. 2021 Mar;30(3):277-282. doi: 10.1002/pds.5189. Epub 2021 Jan 6.

本文引用的文献

1
Optimal Estimator for Logistic Model with Distribution-free Random Intercept.
Scand Stat Theory Appl. 2016 Mar;43(1):156-171. doi: 10.1111/sjos.12170. Epub 2015 Aug 6.
2
An adaptive Mantel-Haenszel test for sensitivity analysis in observational studies.
Biometrics. 2017 Jun;73(2):422-430. doi: 10.1111/biom.12591. Epub 2016 Oct 4.
3
A flexible, interpretable framework for assessing sensitivity to unmeasured confounding.
Stat Med. 2016 Sep 10;35(20):3453-70. doi: 10.1002/sim.6973. Epub 2016 May 3.
4
Sensitivity Analysis Without Assumptions.
Epidemiology. 2016 May;27(3):368-77. doi: 10.1097/EDE.0000000000000457.
5
Calibrating sensitivity analyses to observed covariates in observational studies.
Biometrics. 2013 Dec;69(4):803-11. doi: 10.1111/biom.12101. Epub 2013 Nov 4.
6
The relationship between urban sprawl and coronary heart disease in women.
Health Place. 2013 Mar;20:51-61. doi: 10.1016/j.healthplace.2012.11.003. Epub 2012 Dec 7.
7
Amplification of Sensitivity Analysis in Matched Observational Studies.
J Am Stat Assoc. 2009 Dec 1;104(488):1398-1405. doi: 10.1198/jasa.2009.tm08470.
9
Matching methods for causal inference: A review and a look forward.
Stat Sci. 2010 Feb 1;25(1):1-21. doi: 10.1214/09-STS313.
10
Bayesian sensitivity analysis for unmeasured confounding in observational studies.
Stat Med. 2007 May 20;26(11):2331-47. doi: 10.1002/sim.2711.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验