Suppr超能文献

兴奋神经网络简单确定性模型中自我维持活动的构建块。

Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks.

机构信息

School of Engineering and Science, Jacobs University Bremen Bremen, Germany.

出版信息

Front Comput Neurosci. 2012 Aug 6;6:50. doi: 10.3389/fncom.2012.00050. eCollection 2012.

Abstract

Understanding the interplay of topology and dynamics of excitable neural networks is one of the major challenges in computational neuroscience. Here we employ a simple deterministic excitable model to explore how network-wide activation patterns are shaped by network architecture. Our observables are co-activation patterns, together with the average activity of the network and the periodicities in the excitation density. Our main results are: (1) the dependence of the correlation between the adjacency matrix and the instantaneous (zero time delay) co-activation matrix on global network features (clustering, modularity, scale-free degree distribution), (2) a correlation between the average activity and the amount of small cycles in the graph, and (3) a microscopic understanding of the contributions by 3-node and 4-node cycles to sustained activity.

摘要

理解兴奋神经网络的拓扑结构和动力学的相互作用是计算神经科学的主要挑战之一。在这里,我们采用一个简单的确定性兴奋模型来探索网络架构如何影响整体网络的激活模式。我们的观测变量是共同激活模式,以及网络的平均活动和激发密度的周期性。我们的主要结果是:(1)邻接矩阵和瞬时(零时间延迟)共同激活矩阵之间的相关性与全局网络特征(聚类、模块性、无标度度分布)的依赖性;(2)平均活动与图中小循环数量之间的相关性;(3)对 3 节点和 4 节点循环对持续活动的贡献的微观理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f26/3412572/df29088c88c4/fncom-06-00050-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验