Suppr超能文献

图上激发动力学简单模型中自持续活动的拓扑决定因素。

Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs.

机构信息

Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany.

Department of Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.

出版信息

Sci Rep. 2017 Feb 10;7:42340. doi: 10.1038/srep42340.

Abstract

Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.

摘要

图上的激发动力学的简单模型是研究网络拓扑结构和动力学之间相互作用的有效框架。这个主题在从神经科学到工程学的多个领域都具有实际意义。在这里,我们分析了单个激发如何作为激发阈值(即节点激发所需的邻域活动的相对量)的函数在随机网络中传播。我们观察到两个尖锐的转变划定了一个持续活动的区域。使用分析考虑和数值模拟,我们表明这些转变分别源于传播的障碍和拓扑环的激发的存在,并且可以从网络拓扑结构进行预测。我们的发现是在神经网络中的网络回响和自维持活动的背景下进行解释的,这是计算神经科学中长期存在的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f22/5301238/10b1ec7bd029/srep42340-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验