Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
J Biol Chem. 2012 Oct 12;287(42):35275-35285. doi: 10.1074/jbc.M112.404848. Epub 2012 Aug 14.
Using a combined experimental and theoretical approach named binding-unbinding correlation spectroscopy (BUCS), we describe the two-dimensional kinetics of interactions between fibrinogen and the integrin αIIbβ3, the ligand-receptor pair essential for platelet function during hemostasis and thrombosis. The methodology uses the optical trap to probe force-free association of individual surface-attached fibrinogen and αIIbβ3 molecules and forced dissociation of an αIIbβ3-fibrinogen complex. This novel approach combines force clamp measurements of bond lifetimes with the binding mode to quantify the dependence of the binding probability on the interaction time. We found that fibrinogen-reactive αIIbβ3 pre-exists in at least two states that differ in their zero force on-rates (k(on1) = 1.4 × 10(-4) and k(on2) = 2.3 × 10(-4) μm(2)/s), off-rates (k(off1) = 2.42 and k(off2) = 0.60 s(-1)), and dissociation constants (K(d)(1) = 1.7 × 10(4) and K(d)(2) = 2.6 × 10(3) μm(-2)). The integrin activator Mn(2+) changed the on-rates and affinities (K(d)(1) = 5 × 10(4) and K(d)(2) = 0.3 × 10(3) μm(-2)) but did not affect the off-rates. The strength of αIIbβ3-fibrinogen interactions was time-dependent due to a progressive increase in the fraction of the high affinity state of the αIIbβ3-fibrinogen complex characterized by a faster on-rate. Upon Mn(2+)-induced integrin activation, the force-dependent off-rates decrease while the complex undergoes a conformational transition from a lower to higher affinity state. The results obtained provide quantitative estimates of the two-dimensional kinetic rates for the low and high affinity αIIbβ3 and fibrinogen interactions at the single molecule level and offer direct evidence for the time- and force-dependent changes in αIIbβ3 conformation and ligand binding activity, underlying the dynamics of fibrinogen-mediated platelet adhesion and aggregation.
我们采用一种名为结合-解离相关光谱学(Binding-Unbinding Correlation Spectroscopy,BUCS)的实验与理论相结合的方法,描述了纤维蛋白原与整合素αIIbβ3之间相互作用的二维动力学,αIIbβ3是止血和血栓形成过程中血小板功能所必需的配体-受体对。该方法使用光阱探测单个表面附着的纤维蛋白原和αIIbβ3分子的无外力结合以及αIIbβ3-纤维蛋白原复合物的强制解离。这种新方法将键寿命的力夹测量与结合模式相结合,以定量测量结合概率对相互作用时间的依赖性。我们发现,纤维蛋白原反应性的αIIbβ3至少存在两种状态,它们在零力结合速率(k(on1)=1.4×10(-4)和 k(on2)=2.3×10(-4)μm(2)/s)、解离速率(k(off1)=2.42 和 k(off2)=0.60 s(-1))和解离常数(K(d)(1)=1.7×10(4)和 K(d)(2)=2.6×10(3)μm(-2))方面存在差异。整合素激活剂 Mn(2+)改变了结合速率和亲和力(K(d)(1)=5×10(4)和 K(d)(2)=0.3×10(3)μm(-2)),但不影响解离速率。由于αIIbβ3-纤维蛋白原复合物的高亲和力状态的比例逐渐增加,导致αIIbβ3-纤维蛋白原相互作用的强度随时间而变化,其特征是更快的结合速率。在 Mn(2+)-诱导的整合素激活后,力依赖性解离速率降低,同时复合物经历从低亲和力状态到高亲和力状态的构象转变。所得结果提供了在单分子水平上低和高亲和力αIIbβ3 和纤维蛋白原相互作用的二维动力学速率的定量估计,并提供了αIIbβ3构象和配体结合活性随时间和力变化的直接证据,这是纤维蛋白原介导的血小板黏附与聚集动力学的基础。