Assmann G, Schulte H
Westfälische Wilhelms-Universität, Münster, Federal Republic of Germany.
Drugs. 1990;40 Suppl 1:13-8. doi: 10.2165/00003495-199000401-00005.
Data from the Prospective Cardiovascular Münster (PROCAM) study have been used to develop a mathematical model that accurately predicts the outcome of treatment in a primary prevention study (the Helsinki Heart Study). The PROCAM study identified 8 major risk factors for coronary heart disease: age, total plasma cholesterol level, plasma high density lipoprotein (HDL)-cholesterol level, systolic blood pressure, smoking, diabetes, angina pectoris, and a family history of myocardial infarction. A single risk factor such as total plasma cholesterol level is not sufficiently sensitive to identify individuals at high risk of coronary heart disease. The total cholesterol:HDL-cholesterol ratio is recommended for clinical use. On the basis of these data, a primary prevention strategy for coronary heart disease in West Germany has been proposed to optimise the cost-effectiveness of such treatment. Future research should focus on the identification of feasible and sensitive risk factors for coronary heart disease. Fibrinogen and apolipoproteins have already attracted interest in this regard but more definitive studies are required to confirm their role as risk factors for coronary heart disease.
来自明斯特前瞻性心血管病研究(PROCAM)的数据已被用于建立一个数学模型,该模型能准确预测一项一级预防研究(赫尔辛基心脏研究)中的治疗结果。PROCAM研究确定了冠心病的8个主要危险因素:年龄、血浆总胆固醇水平、血浆高密度脂蛋白(HDL)胆固醇水平、收缩压、吸烟、糖尿病、心绞痛以及心肌梗死家族史。单一危险因素,如血浆总胆固醇水平,对于识别冠心病高危个体而言不够敏感。推荐使用总胆固醇与HDL胆固醇的比值用于临床。基于这些数据,已提出西德冠心病一级预防策略,以优化此类治疗的成本效益。未来的研究应聚焦于识别冠心病可行且敏感的危险因素。纤维蛋白原和载脂蛋白在这方面已引起关注,但还需要更确凿的研究来证实它们作为冠心病危险因素的作用。