Suppr超能文献

通过示例说明计算机化肺部分割中的障碍。

Illustration of the obstacles in computerized lung segmentation using examples.

作者信息

Meng Xin, Qiang Yongqian, Zhu Shaocheng, Fuhrman Carl, Siegfried Jill M, Pu Jiantao

机构信息

Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.

出版信息

Med Phys. 2012 Aug;39(8):4984-91. doi: 10.1118/1.4737023.

Abstract

PURPOSE

Automated lung volume segmentation is often a preprocessing step in quantitative lung computed tomography (CT) image analysis. The objective of this study is to identify the obstacles in computerized lung volume segmentation and illustrate those explicitly using real examples. Awareness of these "difficult" cases may be helpful for the development of a robust and consistent lung segmentation algorithm.

METHODS

We collected a large diverse dataset consisting of 2768 chest CT examinations acquired on 2292 subjects from various sources. These examinations cover a wide range of diseases, including lung cancer, chronic obstructive pulmonary disease, human immunodeficiency virus, pulmonary embolism, pneumonia, asthma, and interstitial lung disease (ILD). The CT acquisition protocols, including dose, scanners, and reconstruction kernels, vary significantly. After the application of a "neutral" thresholding-based approach to the collected CT examinations in a batch manner, the failed cases were subjectively identified and classified into different subgroups.

RESULTS

Totally, 121 failed examinations are identified, corresponding to a failure ratio of 4.4%. These failed cases are summarized as 11 different subgroups, which is further classified into 3 broad categories: (1) failure caused by diseases, (2) failure caused by anatomy variability, and (3) failure caused by external factors. The failure percentages in these categories are 62.0%, 32.2%, and 5.8%, respectively.

CONCLUSIONS

The presence of specific lung diseases (e.g., pulmonary nodules, ILD, and pneumonia) is the primary issue in computerized lung segmentation. The segmentation failures caused by external factors and anatomy variety are relatively low but unavoidable in practice. It is desirable to develop robust schemes to handle these issues in a single pass when a large number of CT examinations need to be analyzed.

摘要

目的

在定量肺计算机断层扫描(CT)图像分析中,自动肺容积分割通常是一个预处理步骤。本研究的目的是识别计算机化肺容积分割中的障碍,并使用实际例子明确说明这些障碍。了解这些“困难”病例可能有助于开发强大且一致的肺分割算法。

方法

我们收集了一个多样化的大型数据集,该数据集由从各种来源获取的2292名受试者的2768次胸部CT检查组成。这些检查涵盖了广泛的疾病,包括肺癌、慢性阻塞性肺疾病、人类免疫缺陷病毒、肺栓塞、肺炎、哮喘和间质性肺疾病(ILD)。CT采集协议,包括剂量、扫描仪和重建内核,差异很大。在以批处理方式对收集的CT检查应用基于“中性”阈值的方法后,主观识别出失败的病例并将其分类到不同的亚组中。

结果

总共识别出121次失败的检查,失败率为4.4%。这些失败的病例被总结为11个不同的亚组,进一步分为3大类:(1)由疾病引起的失败,(2)由解剖变异引起的失败,(3)由外部因素引起的失败。这些类别中的失败百分比分别为62.0%、32.2%和5.8%。

结论

特定肺部疾病(如肺结节、ILD和肺炎)的存在是计算机化肺分割中的主要问题。由外部因素和解剖多样性引起的分割失败相对较低,但在实践中不可避免。当需要分析大量CT检查时,期望开发强大的方案来一次性处理这些问题。

相似文献

6
Pulmonary lobe segmentation in CT examinations using implicit surface fitting.利用隐式曲面拟合进行 CT 检查中的肺叶分割。
IEEE Trans Med Imaging. 2009 Dec;28(12):1986-96. doi: 10.1109/TMI.2009.2027117. Epub 2009 Jul 21.
10
Vessel tree segmentation in presence of interstitial lung disease in MDCT.MDCT中存在间质性肺疾病时的血管树分割
IEEE Trans Inf Technol Biomed. 2011 Mar;15(2):214-20. doi: 10.1109/TITB.2011.2112668. Epub 2011 Feb 10.

本文引用的文献

7
9
Automatic segmentation of pulmonary lobes robust against incomplete fissures.自动分割稳健的肺叶,不受不完全裂的影响。
IEEE Trans Med Imaging. 2010 Jun;29(6):1286-96. doi: 10.1109/TMI.2010.2044799. Epub 2010 Mar 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验