State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, College of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
Nano Lett. 2012 Sep 12;12(9):4584-9. doi: 10.1021/nl301831h. Epub 2012 Aug 15.
Design and preparation of efficient artificial photosynthetic systems for harvesting solar energy by production of hydrogen from water splitting is of great importance from both theoretical and practical viewpoints. ZnS-based solid solutions have been fully proved to be an efficient visible-light driven photocatalysts, however, the H(2)-production rate observed for these solid solutions is far from exciting and sometimes an expensive Pt cocatalyst is still needed in order to achieve higher quantum efficiency. Here, for the first time we report the high solar photocatalytic H(2)-production activity over the noble metal-free reduced graphene oxide (RGO)-Zn(x)Cd(1-x)S nanocomposite prepared by a facile coprecipitation-hydrothermal reduction strategy. The optimized RGO-Zn(0.8)Cd(0.2)S photocatalyst has a high H(2)-production rate of 1824 μmol h(-1) g(-1) at the RGO content of 0.25 wt % and the apparent quantum efficiency of 23.4% at 420 nm (the energy conversion efficiency is ca. 0.36% at simulated one-sun (AM 1.5G) illumination). The results exhibit significantly improved photocatalytic hydrogen production by 450% compared with that of the pristine Zn(0.8)Cd(0.2)S, and are better than that of the optimized Pt-Zn(0.8)Cd(0.2)S under the same reaction conditions, showing that the RGO-Zn(0.8)Cd(0.2)S nanocomposite represents one of the most highly active metal sulfide photocatalyts in the absence of noble metal cocatalysts. This work creates a green and simple way for using RGO as a support to enhance the photocatalytic H(2)-production activity of Zn(x)Cd(1-x)S, and also demonstrates that RGO is a promising substitute for noble metals in photocatalytic H(2)-production.
设计和制备高效的人工光合作用系统,通过水分解来产生氢气,从而从理论和实践两个方面收集太阳能,这一点非常重要。基于 ZnS 的固溶体已被充分证明是一种有效的可见光驱动光催化剂,但这些固溶体的 H(2)产生速率远非令人兴奋,有时为了达到更高的量子效率,仍需要昂贵的 Pt 共催化剂。在这里,我们首次报道了通过简便的共沉淀-水热还原策略制备的无贵金属还原氧化石墨烯 (RGO)-Zn(x)Cd(1-x)S 纳米复合材料在贵金属自由的太阳能光催化 H(2)产生活性。优化的 RGO-Zn(0.8)Cd(0.2)S 光催化剂在 RGO 含量为 0.25wt%时具有高达 1824 μmol h(-1) g(-1)的高 H(2)产生速率,在 420nm 时的表观量子效率为 23.4%(在模拟单阳光 (AM 1.5G) 照射下,能量转换效率约为 0.36%)。与原始的 Zn(0.8)Cd(0.2)S 相比,结果显示出显著提高的光催化制氢活性,提高了 450%,并且在相同的反应条件下优于优化的 Pt-Zn(0.8)Cd(0.2)S,表明 RGO-Zn(0.8)Cd(0.2)S 纳米复合材料在没有贵金属共催化剂的情况下是最具活性的金属硫化物光催化剂之一。这项工作为使用 RGO 作为载体来增强 Zn(x)Cd(1-x)S 的光催化 H(2)产生活性提供了一种绿色简单的方法,同时也表明 RGO 是光催化 H(2)产生中贵金属的有前途替代品。