Suppr超能文献

前馈和反馈控制中的结构学习。

Structural learning in feedforward and feedback control.

机构信息

Division of Brain Sciences, Imperial College London, London, United Kingdom.

出版信息

J Neurophysiol. 2012 Nov;108(9):2373-82. doi: 10.1152/jn.00315.2012. Epub 2012 Aug 15.

Abstract

For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control.

摘要

为了实现平滑高效的运动控制,大脑需要在运动过程中快速做出修正以抵抗可能的干扰。它还需要适应后续的运动以提高未来的表现。重要的是,基于嘈杂且通常模糊的感觉数据,反馈修正和前馈适应都需要进行。因此,运动系统的初始反应,无论是在线修正还是自适应响应,都受到关于可能的干扰结构的先验假设的指导。在纠正和适应受力场干扰的运动的背景下,我们询问这些先验假设是硬连线的,还是可以通过重复接触不同形状的力场来修改。我们发现,对意外干扰的反馈修正和对新力场的前馈适应都发生了变化,以便能够抵消参与者之前经历过的力场类型。然后,我们研究了这些变化是否是由共同的机制还是两个独立的机制驱动的。参与者经历了时间上一致的力场,导致持续的适应,或者时间上不一致的力场,导致总体适应很少。我们发现,一致的力场改变了反馈和前馈的反应。相比之下,不一致的力场改变了反馈校正的时间形状,但没有改变前馈自适应反应的时间形状。这些结果表明,对力干扰的反应可以以结构的方式进行修改,并且这些修改至少部分可以为反馈和前馈控制进行分离。

相似文献

1
Structural learning in feedforward and feedback control.前馈和反馈控制中的结构学习。
J Neurophysiol. 2012 Nov;108(9):2373-82. doi: 10.1152/jn.00315.2012. Epub 2012 Aug 15.
4
Temporal specificity of the initial adaptive response in motor adaptation.运动适应中初始适应性反应的时间特异性。
PLoS Comput Biol. 2017 Jul 10;13(7):e1005438. doi: 10.1371/journal.pcbi.1005438. eCollection 2017 Jul.

引用本文的文献

2
Exploration biases forelimb reaching strategies.探索偏见影响前肢伸展策略。
Cell Rep. 2024 Apr 23;43(4):113958. doi: 10.1016/j.celrep.2024.113958. Epub 2024 Mar 22.
4
Facilitated adaptation via structural learning increases bimanual interference.通过结构学习促进适应会增加双手干扰。
Exp Brain Res. 2024 Jan;242(1):137-148. doi: 10.1007/s00221-023-06732-4. Epub 2023 Nov 18.
5
A double dissociation between savings and long-term memory in motor learning.运动学习中保存与长期记忆的双重分离。
PLoS Biol. 2023 Apr 27;21(4):e3001799. doi: 10.1371/journal.pbio.3001799. eCollection 2023 Apr.
7
Savings in Human Force Field Learning Supported by Feedback Adaptation.反馈适应支持人力场学习的节约。
eNeuro. 2021 Sep 21;8(5). doi: 10.1523/ENEURO.0088-21.2021. Print 2021 Sep-Oct.

本文引用的文献

3
Principles of sensorimotor learning.感觉运动学习原理。
Nat Rev Neurosci. 2011 Oct 27;12(12):739-51. doi: 10.1038/nrn3112.
6
Inferring visuomotor priors for sensorimotor learning.推断感觉运动学习的视觉运动先验。
PLoS Comput Biol. 2011 Mar;7(3):e1001112. doi: 10.1371/journal.pcbi.1001112. Epub 2011 Mar 31.
8
Responsibility assignment in redundant systems.冗余系统中的责任分配。
Curr Biol. 2010 Jul 27;20(14):1290-5. doi: 10.1016/j.cub.2010.05.069. Epub 2010 Jul 8.
9
Structure learning in a sensorimotor association task.在感觉运动联想任务中的结构学习。
PLoS One. 2010 Jan 29;5(1):e8973. doi: 10.1371/journal.pone.0008973.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验