Suppr超能文献

在感觉运动联想任务中的结构学习。

Structure learning in a sensorimotor association task.

机构信息

Bernstein Center for Computational Neuroscience, Freiburg, Germany.

出版信息

PLoS One. 2010 Jan 29;5(1):e8973. doi: 10.1371/journal.pone.0008973.

Abstract

Learning is often understood as an organism's gradual acquisition of the association between a given sensory stimulus and the correct motor response. Mathematically, this corresponds to regressing a mapping between the set of observations and the set of actions. Recently, however, it has been shown both in cognitive and motor neuroscience that humans are not only able to learn particular stimulus-response mappings, but are also able to extract abstract structural invariants that facilitate generalization to novel tasks. Here we show how such structure learning can enhance facilitation in a sensorimotor association task performed by human subjects. Using regression and reinforcement learning models we show that the observed facilitation cannot be explained by these basic models of learning stimulus-response associations. We show, however, that the observed data can be explained by a hierarchical Bayesian model that performs structure learning. In line with previous results from cognitive tasks, this suggests that hierarchical Bayesian inference might provide a common framework to explain both the learning of specific stimulus-response associations and the learning of abstract structures that are shared by different task environments.

摘要

学习通常被理解为生物体逐渐获得给定感觉刺激与正确运动反应之间的关联。从数学上讲,这对应于回归观测集和动作集之间的映射。然而,最近在认知和运动神经科学中已经表明,人类不仅能够学习特定的刺激-反应映射,还能够提取抽象的结构不变量,从而促进对新任务的泛化。在这里,我们展示了这种结构学习如何增强人类受试者在执行感觉运动关联任务时的促进作用。使用回归和强化学习模型,我们表明,这些基本的学习刺激-反应关联的模型无法解释所观察到的促进作用。然而,我们表明,所观察到的数据可以用执行结构学习的分层贝叶斯模型来解释。与来自认知任务的先前结果一致,这表明分层贝叶斯推理可能为解释特定刺激-反应关联的学习和不同任务环境共享的抽象结构的学习提供了一个共同的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab2/2813299/b9bf4b5ec558/pone.0008973.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验