Suppr超能文献

从光遗传学到放射遗传学:波长的转变。

From opto- to radio-genetics: A switch in the wavelength.

作者信息

Proft Juliane, Weiss Norbert

出版信息

Commun Integr Biol. 2012 May 1;5(3):227-9. doi: 10.4161/cib.21148.

Abstract

The use of ion channels to control defined events in defined cell types at defined times in the context of living tissue or whole organism represent one of the major advance of the last decade, and optogenetics (i.e the combination of genetic and optical methods) obviously played a key role in this achievement.(1) Although the existence of light-activated ion channels (i.e ospin channels) has been known since 1971,(2) it took about 35 y before the concept of an ion channel used for bioengineering control of cell or tissue activity becomes reality.(3) From that moment forward, rhodopsine channels(4) (,) (5) (i.e blue light-gated non-specific Na(+) channels that depolarize cells thus increasing cell excitability) or halorhodopsin channels(6) (i.e yellow light-gated Cl(-) channels that hyperpolarize cells thus decreasing cell excitability) have been extensively used to turn neurons on and off in response to diverse colors of light, with an extremely high temporal precision (i.e milliseconds range). Although optogenetics has been originally established in neuroscience, it addresses now to non-neuronal systems, including cardiac, smooth and skeletal muscles, glial cells or even embryonic stem cells.(7) (-) (9) However, although light stimulation allows control of cell excitability with a high spatio-temporal specificity, light waves present the disadvantage to not penetrate deep tissue, and implanted devices are required for in vivo light stimulation. In contrast to visible light-waves, radio-waves (i.e longer wavelength and lower frequency) can penetrate deep tissues with minimal energy absorption.

摘要

在活组织或整个生物体的背景下,利用离子通道在特定时间控制特定细胞类型中的特定事件,是过去十年的重大进展之一,而光遗传学(即遗传学和光学方法的结合)显然在这一成就中发挥了关键作用。(1)尽管自1971年以来就已知道存在光激活离子通道(即视蛋白通道),(2)但直到大约35年后,用于细胞或组织活动生物工程控制的离子通道概念才成为现实。(3)从那时起,视紫红质通道(4)(,)(5)(即蓝光门控的非特异性Na⁺通道,可使细胞去极化从而增加细胞兴奋性)或嗜盐菌视紫红质通道(6)(即黄光门控的Cl⁻通道,可使细胞超极化从而降低细胞兴奋性)已被广泛用于根据不同颜色的光来开启和关闭神经元,具有极高的时间精度(即毫秒范围)。尽管光遗传学最初是在神经科学中建立的,但现在它也应用于非神经元系统,包括心脏、平滑肌和骨骼肌、神经胶质细胞甚至胚胎干细胞。(7)(-)(9)然而,尽管光刺激能够以高时空特异性控制细胞兴奋性,但光波存在无法穿透深层组织的缺点,因此体内光刺激需要植入设备。与可见光波相比,无线电波(即波长更长、频率更低)能够以最小的能量吸收穿透深层组织。

相似文献

2
Optogenetic manipulation of neural and non-neural functions.光遗传学在神经和非神经功能中的应用。
Dev Growth Differ. 2013 May;55(4):474-90. doi: 10.1111/dgd.12053. Epub 2013 Apr 4.
6
Spotlighted Brains: Optogenetic Activation and Silencing of Neurons.重点脑区:光遗传学激活和神经元沉默。
Trends Biochem Sci. 2015 Nov;40(11):624-627. doi: 10.1016/j.tibs.2015.09.004. Epub 2015 Oct 1.
7
Optogenetic user's guide to Opto-GPCRs.光遗传学用户指南:光控 G 蛋白偶联受体。
Front Biosci (Landmark Ed). 2016 Jan 1;21(4):794-805. doi: 10.2741/4421.

本文引用的文献

3
Induction of TRPV1 desensitization by a biased receptor agonist.TRPV1 脱敏的偏受体激动剂诱导。
Channels (Austin). 2011 Nov-Dec;5(6):464-7. doi: 10.4161/chan.5.6.17401. Epub 2011 Nov 1.
6
Dissecting TRPV1: lessons to be learned?解析 TRPV1:有哪些经验教训?
Channels (Austin). 2011 May-Jun;5(3):201-4. doi: 10.4161/chan.5.3.16291. Epub 2011 May 1.
8
Optogenetics.光遗传学。
Nat Methods. 2011 Jan;8(1):26-9. doi: 10.1038/nmeth.f.324. Epub 2010 Dec 20.
10
Optogenetic experimentation on astrocytes.光遗传学在星形胶质细胞上的实验。
Exp Physiol. 2011 Jan;96(1):40-50. doi: 10.1113/expphysiol.2010.052597. Epub 2010 Nov 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验