Suppr超能文献

一种用于中等非线性波传播的 k 空间方法。

A k-space method for moderately nonlinear wave propagation.

机构信息

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1664-73. doi: 10.1109/TUFFC.2012.2372.

Abstract

A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant-Friedrichs-Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation.

摘要

提出了一种用于吸收介质中中等非线性波传播的 k 空间方法。首先通过傅里叶变换将 Westervelt 方程转换到 k 空间,然后通过改进的波矢时域方案进行求解。该方法不受前向传播或抛物线近似的限制。通过将结果与解析解和有限时域差分(FDTD)方法进行比较,研究了一维和二维问题以验证该方法。结果表明,在均匀介质中获得精确结果时,网格尺寸可以为每波长两个点,对于中等非线性问题,Courant-Friedrichs-Lewy 数可以高达 0.4。通过与传统 FDTD 方法的比较,本文表明用于非线性波传播的 k 空间方法在计算上更高效和准确。然后,使用 k 空间方法研究了颅骨中的三维非线性波传播,结果表明通过换能器发送低频信号可以在高频下在大脑中实现相对精确的聚焦。最后,使用单个图形处理单元实现 k 空间方法表明,它所需的计算时间约为单核 CPU 计算的七分之一。

相似文献

1
A k-space method for moderately nonlinear wave propagation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1664-73. doi: 10.1109/TUFFC.2012.2372.
2
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation.
J Acoust Soc Am. 2011 Jan;129(1):32-46. doi: 10.1121/1.3504705.
4
A k-space method for large-scale models of wave propagation in tissue.
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Mar;48(2):341-54. doi: 10.1109/58.911717.
5
Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1258-1267. doi: 10.1109/TUFFC.2018.2828316.
6
Effects of nonlinear ultrasound propagation on high intensity brain therapy.
Med Phys. 2011 Mar;38(3):1207-16. doi: 10.1118/1.3531553.
8
Unconditionally stable FDTD algorithm for 3-D electromagnetic simulation of nonlinear media.
Opt Express. 2019 May 13;27(10):15018-15031. doi: 10.1364/OE.27.015018.
9
Wave envelopes method for description of nonlinear acoustic wave propagation.
Ultrasonics. 2006 Jul;44(3):310-29. doi: 10.1016/j.ultras.2006.04.001. Epub 2006 May 22.

引用本文的文献

1
A Roadmap to Holographic Focused Ultrasound Approaches for Generating Gradient Thermal Patterns.
Int J Numer Method Biomed Eng. 2025 Jun;41(6):e70055. doi: 10.1002/cnm.70055.
2
Biomedical Application of Photoacoustics: A Plethora of Opportunities.
Micromachines (Basel). 2022 Nov 3;13(11):1900. doi: 10.3390/mi13111900.
3
Main Uncertainties in the RF Ultrasound Scanning Simulation of the Standard Ultrasound Phantoms.
Sensors (Basel). 2021 Jun 28;21(13):4420. doi: 10.3390/s21134420.
5
Spherical Array System for High-Precision Transcranial Ultrasound Stimulation and Optoacoustic Imaging in Rodents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jan;68(1):107-115. doi: 10.1109/TUFFC.2020.2994877. Epub 2020 Dec 23.
7
Simulation of the Second-Harmonic Ultrasound Field in Heterogeneous Soft Tissue Using a Mixed-Domain Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Apr;66(4):669-675. doi: 10.1109/TUFFC.2019.2892753. Epub 2019 Jan 14.
8
Numerical Modeling of Ultrasound Propagation in Weakly Heterogeneous Media Using a Mixed-Domain Method.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jul;65(7):1258-1267. doi: 10.1109/TUFFC.2018.2828316.
9
Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Feb;64(2):374-390. doi: 10.1109/TUFFC.2016.2619913. Epub 2016 Oct 20.
10
Numerical absorbing boundary conditions based on a damped wave equation for pseudospectral time-domain acoustic simulations.
ScientificWorldJournal. 2014 Mar 11;2014:285945. doi: 10.1155/2014/285945. eCollection 2014.

本文引用的文献

1
On the use of Gegenbauer reconstructions for shock wave propagation modeling.
J Acoust Soc Am. 2011 Sep;130(3):1115-24. doi: 10.1121/1.3621485.
2
SIMULATION OF THREE-DIMENSIONAL NONLINEAR FIELDS OF ULTRASOUND THERAPEUTIC ARRAYS.
Acoust Phys. 2011 May 1;57(3):334-343. doi: 10.1134/S1063771011030213.
3
Verification of the Westervelt equation for focused transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):1097-101. doi: 10.1109/TUFFC.2011.1910.
4
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation.
J Acoust Soc Am. 2011 Jan;129(1):32-46. doi: 10.1121/1.3504705.
6
k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields.
J Biomed Opt. 2010 Mar-Apr;15(2):021314. doi: 10.1117/1.3360308.
7
Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients.
Neurosurgery. 2010 Feb;66(2):323-32; discussion 332. doi: 10.1227/01.NEU.0000360379.95800.2F.
9
Acoustic diode: rectification of acoustic energy flux in one-dimensional systems.
Phys Rev Lett. 2009 Sep 4;103(10):104301. doi: 10.1103/PhysRevLett.103.104301. Epub 2009 Sep 1.
10
A heterogeneous nonlinear attenuating full-wave model of ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):474-88. doi: 10.1109/TUFFC.2009.1066.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验