IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jan;68(1):107-115. doi: 10.1109/TUFFC.2020.2994877. Epub 2020 Dec 23.
Ultrasound can be delivered transcranially to ablate brain tissue, open the blood-brain barrier, or affect neural activity. Transcranial focused ultrasound in small rodents is typically done with low-frequency single-element transducers, which results in unspecific targeting and impedes the concurrent use of fast neuroimaging methods. In this article, we devised a wide-angle spherical array bidirectional interface for high-resolution parallelized optoacoustic imaging and transcranial ultrasound (POTUS) delivery in the same target regions. The system operates between 3 and 9 MHz, allowing to generate and steer focal spots with widths down to [Formula: see text] across a field of view covering the entire mouse brain, while the same array is used to capture high-resolution 3-D optoacoustic data in real time. We showcase the system's versatile beam-forming capacities as well as volumetric optoacoustic imaging capabilities and discuss its potential to noninvasively monitor brain activity and various effects of ultrasound emission.
超声波可以经颅传递以消融脑组织、打开血脑屏障或影响神经活动。在小型啮齿动物中,经颅聚焦超声通常使用低频单元素换能器进行,这导致非特异性靶向,并妨碍了快速神经成像方法的同时使用。在本文中,我们设计了一种广角球形阵列双向接口,用于在同一目标区域进行高分辨率并行光声成像和经颅超声(POTUS)传递。该系统在 3 至 9 MHz 之间运行,允许在覆盖整个小鼠大脑的视场中产生和引导宽度低至[公式:见正文]的焦点,同时同一阵列用于实时捕获高分辨率 3-D 光声数据。我们展示了系统灵活的波束形成能力以及体积光声成像能力,并讨论了其用于非侵入性监测大脑活动和各种超声发射效果的潜力。