Suppr超能文献

实时环形阵列成像的合成聚焦策略。

Synthetic-focusing strategies for real-time annular-array imaging.

机构信息

Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1830-9. doi: 10.1109/TUFFC.2012.2388.

Abstract

Annular arrays provide a means to achieve enhanced image quality with a limited number of elements. Synthetic-focusing (SF) strategies that rely on beamforming data from individual transmit-to-receive (TR) element pairs provide a means to improve image quality without specialized TR delay electronics. Here, SF strategies are examined in the context of high-frequency ultrasound (>15 MHz) annular arrays composed of five elements, operating at 18 and 38 MHz. Acoustic field simulations are compared with experimental data acquired from wire and anechoic-sphere phantoms, and the values of lateral beamwidth, SNR, contrast-to-noise ratio (CNR), and depth of field (DOF) are compared as a function of depth. In each case, data were acquired for all TR combinations (25 in total) and processed with SF using all 25 TR pairs and SF with the outer receive channels removed one by one. The results show that removing the outer receive channels led to an overall degradation of lateral resolution, an overall decrease in SNR, and did not reduce the DOF, although the DOF profile decreased in amplitude. The CNR was >1 and remained fairly constant as a function of depth, with a slight decrease in CNR for the case with just the central element receiving. The relative changes between the calculated and measured quantities were nearly identical for the 18- and 38-MHz arrays. B-mode images of the anechoic phantom and an in vivo mouse embryo using full SF with 25 TR pairs or reduced TR-pair approaches showed minimal qualitative difference.

摘要

环形阵列提供了一种用有限数量的元件实现增强图像质量的方法。依赖于来自单个发射-接收 (TR) 元件对的波束形成数据的合成聚焦 (SF) 策略提供了一种无需特殊 TR 延迟电子设备即可提高图像质量的方法。在这里,SF 策略在由五个元件组成的高频超声 (>15 MHz) 环形阵列的背景下进行了检查,工作频率为 18 MHz 和 38 MHz。声场模拟与从线和无回声球型体模获得的实验数据进行了比较,并比较了作为深度函数的横向波束宽度、SNR、对比噪声比 (CNR) 和景深 (DOF) 的值。在每种情况下,都对所有 TR 组合 (总共 25 个) 进行了数据采集,并使用所有 25 个 TR 对进行了 SF 处理,并逐个去除了外部接收通道的 SF 处理。结果表明,去除外部接收通道会导致横向分辨率整体下降、SNR 整体下降,并且不会减小 DOF,尽管 DOF 轮廓的幅度减小。CNR >1,并且作为深度的函数基本保持恒定,仅使用中心元件接收时 CNR 略有下降。对于 18 MHz 和 38 MHz 阵列,计算和测量量之间的相对变化几乎相同。使用 25 个 TR 对的全 SF 或减少 TR 对方法对无回声体模和体内小鼠胚胎进行的 B 模式图像显示出最小的定性差异。

相似文献

1
Synthetic-focusing strategies for real-time annular-array imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1830-9. doi: 10.1109/TUFFC.2012.2388.
2
Characterization of the spatial resolution of different high-frequency imaging systems using a novel anechoic-sphere phantom.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):994-1005. doi: 10.1109/TUFFC.2011.1990.
3
40-MHz ultrasound imaging with chirps and annular arrays.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2518-21. doi: 10.1109/IEMBS.2008.4649712.
4
High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging.
Ultrasound Med Biol. 2009 Jul;35(7):1198-208. doi: 10.1016/j.ultrasmedbio.2008.12.017. Epub 2009 Apr 25.
5
Dual stage beamforming in the absence of front-end receive focusing.
Phys Med Biol. 2017 Jul 31;62(16):6631-6648. doi: 10.1088/1361-6560/aa78df.
6
Capacitive micromachined ultrasonic transducers: next-generation arrays for acoustic imaging?
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Nov;49(11):1596-610. doi: 10.1109/tuffc.2002.1049742.
8
A flexible annular-array imaging platform for micro-ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jan;60(1):178-86. doi: 10.1109/TUFFC.2013.2548.
9
Chirp-coded excitation imaging with a high-frequency ultrasound annular array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):508-13. doi: 10.1109/TUFFC.2008.670.
10
Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
Ultrason Imaging. 2017 Jul;39(4):224-239. doi: 10.1177/0161734616688328. Epub 2017 Jan 9.

引用本文的文献

1
Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1257-1267. doi: 10.1109/TUFFC.2022.3150179. Epub 2022 Mar 30.
2
Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2674-2691. doi: 10.1109/TUFFC.2020.3007808. Epub 2020 Nov 24.
4
Coherence-Weighted Synthetic Focusing Applied to Photoacoustic Imaging Using a High-Frequency Annular-Array Transducer.
Ultrason Imaging. 2016 Jan;38(1):32-43. doi: 10.1177/0161734615583981. Epub 2015 Apr 28.

本文引用的文献

1
Pulse-encoded ultrasound imaging of the vitreous with an annular array.
Ophthalmic Surg Lasers Imaging. 2012 Jan-Feb;43(1):82-6. doi: 10.3928/15428877-20110901-03. Epub 2011 Sep 8.
2
GPU-based beamformer: fast realization of plane wave compounding and synthetic aperture imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Aug;58(8):1698-705. doi: 10.1109/TUFFC.2011.1999.
3
Characterization of the spatial resolution of different high-frequency imaging systems using a novel anechoic-sphere phantom.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):994-1005. doi: 10.1109/TUFFC.2011.1990.
4
Anechoic sphere phantoms for estimating 3-D resolution of very-high-frequency ultrasound scanners.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2284-92. doi: 10.1109/TUFFC.2010.1689.
5
High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging.
Ultrasound Med Biol. 2009 Jul;35(7):1198-208. doi: 10.1016/j.ultrasmedbio.2008.12.017. Epub 2009 Apr 25.
7
40-MHz annular array imaging of mouse embryos.
Ultrasound Med Biol. 2006 Nov;32(11):1631-7. doi: 10.1016/j.ultrasmedbio.2006.05.020.
8
Synthetic aperture ultrasound imaging.
Ultrasonics. 2006 Dec 22;44 Suppl 1:e5-15. doi: 10.1016/j.ultras.2006.07.017. Epub 2006 Aug 11.
9
High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Feb;53(2):309-16. doi: 10.1109/tuffc.2006.1593369.
10
A digital beamformer for high-frequency annular arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Aug;52(8):1262-9. doi: 10.1109/tuffc.2005.1509785.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验