Aristizábal Orlando, Ketterling Jeffrey A, Turnbull Daniel H
Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
Ultrasound Med Biol. 2006 Nov;32(11):1631-7. doi: 10.1016/j.ultrasmedbio.2006.05.020.
Ultrasound biomicroscopy (UBM) has emerged as an important in vivo imaging approach for analyzing normal and genetically engineered mouse embryos. Current UBM systems use fixed-focus transducers, which are limited in depth-of-focus. Depending on the gestational age of the embryo, regions-of-interest in the image can extend well beyond the depth-of-focus for a fixed-focus transducer. This shortcoming makes it particularly problematic to analyze 3-D data sets and to generate accurate volumetric renderings of the mouse embryonic anatomy. To address this problem, we have developed a five-element, 40-MHz annular array transducer and a computer-controlled system to acquire and reconstruct fixed- and array-focused images of mouse embryos. Both qualitative and quantitative comparisons showed significant improvement with array-focusing, including an increase of 3 to 9 dB in signal-to-noise ratio and an increase of at least 2.5 mm in depth-of-focus. Volumetric-rendered images of brain ventricles demonstrated the clear superiority of array-focusing for 3-D analysis of mouse embryonic anatomy.
超声生物显微镜(UBM)已成为分析正常和基因工程小鼠胚胎的一种重要的体内成像方法。当前的UBM系统使用固定焦距换能器,其聚焦深度有限。根据胚胎的胎龄,图像中的感兴趣区域可能会延伸到固定焦距换能器的聚焦深度之外。这一缺点使得分析三维数据集以及生成小鼠胚胎解剖结构的准确体积渲染图变得特别困难。为了解决这个问题,我们开发了一种五元件、40兆赫的环形阵列换能器以及一个计算机控制系统,用于采集和重建小鼠胚胎的固定聚焦和阵列聚焦图像。定性和定量比较均显示,阵列聚焦有显著改善,包括信噪比提高3至9分贝,聚焦深度至少增加2.5毫米。脑室的体积渲染图像证明了阵列聚焦在小鼠胚胎解剖结构三维分析方面的明显优势。