Suppr超能文献

小鼠胚胎的40兆赫环形阵列成像。

40-MHz annular array imaging of mouse embryos.

作者信息

Aristizábal Orlando, Ketterling Jeffrey A, Turnbull Daniel H

机构信息

Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.

出版信息

Ultrasound Med Biol. 2006 Nov;32(11):1631-7. doi: 10.1016/j.ultrasmedbio.2006.05.020.

Abstract

Ultrasound biomicroscopy (UBM) has emerged as an important in vivo imaging approach for analyzing normal and genetically engineered mouse embryos. Current UBM systems use fixed-focus transducers, which are limited in depth-of-focus. Depending on the gestational age of the embryo, regions-of-interest in the image can extend well beyond the depth-of-focus for a fixed-focus transducer. This shortcoming makes it particularly problematic to analyze 3-D data sets and to generate accurate volumetric renderings of the mouse embryonic anatomy. To address this problem, we have developed a five-element, 40-MHz annular array transducer and a computer-controlled system to acquire and reconstruct fixed- and array-focused images of mouse embryos. Both qualitative and quantitative comparisons showed significant improvement with array-focusing, including an increase of 3 to 9 dB in signal-to-noise ratio and an increase of at least 2.5 mm in depth-of-focus. Volumetric-rendered images of brain ventricles demonstrated the clear superiority of array-focusing for 3-D analysis of mouse embryonic anatomy.

摘要

超声生物显微镜(UBM)已成为分析正常和基因工程小鼠胚胎的一种重要的体内成像方法。当前的UBM系统使用固定焦距换能器,其聚焦深度有限。根据胚胎的胎龄,图像中的感兴趣区域可能会延伸到固定焦距换能器的聚焦深度之外。这一缺点使得分析三维数据集以及生成小鼠胚胎解剖结构的准确体积渲染图变得特别困难。为了解决这个问题,我们开发了一种五元件、40兆赫的环形阵列换能器以及一个计算机控制系统,用于采集和重建小鼠胚胎的固定聚焦和阵列聚焦图像。定性和定量比较均显示,阵列聚焦有显著改善,包括信噪比提高3至9分贝,聚焦深度至少增加2.5毫米。脑室的体积渲染图像证明了阵列聚焦在小鼠胚胎解剖结构三维分析方面的明显优势。

相似文献

1
40-MHz annular array imaging of mouse embryos.
Ultrasound Med Biol. 2006 Nov;32(11):1631-7. doi: 10.1016/j.ultrasmedbio.2006.05.020.
2
High-frequency chirp ultrasound imaging with an annular array for ophthalmologic and small-animal imaging.
Ultrasound Med Biol. 2009 Jul;35(7):1198-208. doi: 10.1016/j.ultrasmedbio.2008.12.017. Epub 2009 Apr 25.
3
Three-dimensional imaging of the brain cavities in human embryos.
Ultrasound Obstet Gynecol. 1995 Apr;5(4):228-32. doi: 10.1046/j.1469-0705.1995.05040228.x.
4
Imaging tools for the developmental biologist: ultrasound biomicroscopy of mouse embryonic development.
Pediatr Res. 2006 Jul;60(1):14-21. doi: 10.1203/01.pdr.0000219441.28206.79. Epub 2006 May 11.
5
High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.
Ophthalmology. 2007 Apr;114(4):816-22. doi: 10.1016/j.ophtha.2006.07.050. Epub 2006 Nov 30.
6
High-throughput, high-frequency 3-D ultrasound for in utero analysis of embryonic mouse brain development.
Ultrasound Med Biol. 2013 Dec;39(12):2321-32. doi: 10.1016/j.ultrasmedbio.2013.06.015. Epub 2013 Sep 11.
8
Ultrasound and magnetic resonance microimaging of mouse development.
Methods Enzymol. 2010;476:379-400. doi: 10.1016/S0076-6879(10)76021-3.
10
Coherence-Weighted Synthetic Focusing Applied to Photoacoustic Imaging Using a High-Frequency Annular-Array Transducer.
Ultrason Imaging. 2016 Jan;38(1):32-43. doi: 10.1177/0161734615583981. Epub 2015 Apr 28.

引用本文的文献

1
Mouse Cardiovascular Imaging.
Curr Protoc. 2024 Sep;4(9):e1116. doi: 10.1002/cpz1.1116.
2
Longitudinal in Utero Analysis of Engrailed-1 Knockout Mouse Embryonic Phenotypes Using High-Frequency Ultrasound.
Ultrasound Med Biol. 2023 Jan;49(1):356-367. doi: 10.1016/j.ultrasmedbio.2022.09.008. Epub 2022 Oct 22.
3
Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1257-1267. doi: 10.1109/TUFFC.2022.3150179. Epub 2022 Mar 30.
4
Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2674-2691. doi: 10.1109/TUFFC.2020.3007808. Epub 2020 Nov 24.
5
Cardiovascular Imaging in Mice.
Curr Protoc Mouse Biol. 2016 Mar 1;6(1):15-38. doi: 10.1002/9780470942390.mo150122.
6
Coherence-Weighted Synthetic Focusing Applied to Photoacoustic Imaging Using a High-Frequency Annular-Array Transducer.
Ultrason Imaging. 2016 Jan;38(1):32-43. doi: 10.1177/0161734615583981. Epub 2015 Apr 28.
7
High-throughput, high-frequency 3-D ultrasound for in utero analysis of embryonic mouse brain development.
Ultrasound Med Biol. 2013 Dec;39(12):2321-32. doi: 10.1016/j.ultrasmedbio.2013.06.015. Epub 2013 Sep 11.
8
Correspondence - Characterization of the effective performance of a high-frequency annular-array-based imaging system using anechoic-pipe phantoms.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Dec;59(12):2825-30. doi: 10.1109/TUFFC.2012/2525.
9
High-resolution MRI of early-stage mouse embryos.
NMR Biomed. 2013 Feb;26(2):224-31. doi: 10.1002/nbm.2843. Epub 2012 Aug 22.
10
Synthetic-focusing strategies for real-time annular-array imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1830-9. doi: 10.1109/TUFFC.2012.2388.

本文引用的文献

1
Operational verification of a 40-MHz annular array transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Mar;53(3):623-30. doi: 10.1109/tuffc.2006.1610571.
2
A digital beamformer for high-frequency annular arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Aug;52(8):1262-9. doi: 10.1109/tuffc.2005.1509785.
3
Design and fabrication of a 40-MHz annular array transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Apr;52(4):672-81. doi: 10.1109/tuffc.2005.1428050.
4
Design and fabrication of annular arrays for high-frequency ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Aug;51(8):1010-7. doi: 10.1109/tuffc.2004.1324405.
5
Embryonic heart failure in NFATc1-/- mice: novel mechanistic insights from in utero ultrasound biomicroscopy.
Circ Res. 2004 Jul 9;95(1):92-9. doi: 10.1161/01.RES.0000133681.99617.28. Epub 2004 May 27.
6
Ultrasound biomicroscopy-Doppler in mouse cardiovascular development.
Physiol Genomics. 2003 Jun 24;14(1):3-15. doi: 10.1152/physiolgenomics.00008.2003.
7
High-frequency 3-D color-flow imaging of the microcirculation.
Ultrasound Med Biol. 2003 Jan;29(1):39-51. doi: 10.1016/s0301-5629(02)00682-8.
9
A new ultrasound instrument for in vivo microimaging of mice.
Ultrasound Med Biol. 2002 Sep;28(9):1165-72. doi: 10.1016/s0301-5629(02)00567-7.
10
A 30-MHz piezo-composite ultrasound array for medical imaging applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Feb;49(2):217-30. doi: 10.1109/58.985706.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验