Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
J Cell Sci. 2012 Nov 1;125(Pt 21):5159-67. doi: 10.1242/jcs.108555. Epub 2012 Aug 16.
Blood vessels deliver oxygen, nutrients, hormones and immunity factors throughout the body. To perform these vital functions, vascular cords branch, lumenize and interconnect. Yet, little is known about the cellular, molecular and physiological mechanisms that control how circulatory networks form and interconnect. Specifically, how circulatory networks merge by interconnecting 'in parallel' along their boundaries remains unexplored. To examine this process we studied the formation and functional maturation of the plexus that forms between the dorsal longitudinal anastomotic vessels (DLAVs) in the zebrafish. We find that the migration and proliferation of endothelial cells within the DLAVs and their segmental (Se) vessel precursors drives DLAV plexus formation. Remarkably, the presence of Se vessels containing only endothelial cells of the arterial lineage is sufficient for DLAV plexus morphogenesis, suggesting that endothelial cells from the venous lineage make a dispensable or null contribution to this process. The discovery of a circuit that integrates the inputs of circulatory flow and vascular endothelial growth factor (VEGF) signaling to modulate aortic arch angiogenesis, together with the expression of components of this circuit in the trunk vasculature, prompted us to investigate the role of these inputs and their relationship during DLAV plexus formation. We find that circulatory flow and VEGF signaling make additive contributions to DLAV plexus morphogenesis, rather than acting as essential inputs with equivalent contributions as they do during aortic arch angiogenesis. Our observations underscore the existence of context-dependent differences in the integration of physiological stimuli and signaling cascades during vascular development.
血管将氧气、营养物质、激素和免疫因子输送到全身。为了执行这些重要的功能,血管索分支、管腔化并相互连接。然而,人们对控制循环网络形成和相互连接的细胞、分子和生理机制知之甚少。具体来说,循环网络如何通过沿着边界“并行”连接来融合仍未被探索。为了研究这个过程,我们研究了在斑马鱼的背向纵贯吻合血管(DLAV)之间形成的丛的形成和功能成熟。我们发现,DLAV 内的内皮细胞的迁移和增殖及其节段性(Se)血管前体驱动 DLAV 丛的形成。值得注意的是,仅包含动脉谱系内皮细胞的 Se 血管的存在足以形成 DLAV 丛形态发生,这表明来自静脉谱系的内皮细胞对这个过程没有贡献或贡献为零。发现一个整合循环流动和血管内皮生长因子(VEGF)信号的输入的回路来调节主动脉弓血管生成,以及这个回路的组件在躯干血管中的表达,促使我们研究这些输入的作用及其在 DLAV 丛形成过程中的关系。我们发现,循环流动和 VEGF 信号对 DLAV 丛形态发生有相加的贡献,而不是作为主动脉弓血管生成过程中必需的输入,具有同等的贡献。我们的观察强调了在血管发育过程中,生理刺激和信号级联的整合存在依赖于上下文的差异。