Suppr超能文献

细菌周质中二硫键的形成:主要成就和未来的挑战。

Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead.

机构信息

Brussels Center for Redox Biology, de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.

出版信息

Antioxid Redox Signal. 2013 Jul 1;19(1):63-71. doi: 10.1089/ars.2012.4864. Epub 2012 Oct 2.

Abstract

SIGNIFICANCE

The discovery of the oxidoreductase disulfide bond protein A (DsbA) in 1991 opened the way to the unraveling of the pathways of disulfide bond formation in the periplasm of Escherichia coli and other Gram-negative bacteria. Correct oxidative protein folding in the E. coli envelope depends on both the DsbA/DsbB pathway, which catalyzes disulfide bond formation, and the DsbC/DsbD pathway, which catalyzes disulfide bond isomerization.

RECENT ADVANCES

Recent data have revealed an unsuspected link between the oxidative protein-folding pathways and the defense mechanisms against oxidative stress. Moreover, bacterial disulfide-bond-forming systems that differ from those at play in E. coli have been discovered.

CRITICAL ISSUES

In this review, we discuss fundamental questions that remain unsolved, such as what is the mechanism employed by DsbD to catalyze the transfer of reducing equivalents across the membrane and how do the oxidative protein-folding catalysts DsbA and DsbC cooperate with the periplasmic chaperones in the folding of secreted proteins.

FUTURE DIRECTIONS

Understanding the mechanism of DsbD will require solving the structure of the membranous domain of this protein. Another challenge of the coming years will be to put the knowledge of the disulfide formation machineries into the global cellular context to unravel the interplay between protein-folding catalysts and chaperones. Also, a thorough characterization of the disulfide bond formation machineries at work in pathogenic bacteria is necessary to design antimicrobial drugs targeting the folding pathway of virulence factors stabilized by disulfide bonds.

摘要

意义

1991 年发现氧化还原酶二硫键蛋白 A(DsbA),为揭示大肠杆菌和其他革兰氏阴性菌周质中二硫键形成途径开辟了道路。大肠杆菌包膜中正确的氧化蛋白折叠既依赖于催化二硫键形成的 DsbA/DsbB 途径,也依赖于催化二硫键异构化的 DsbC/DsbD 途径。

最新进展

最近的数据揭示了氧化蛋白折叠途径与抗氧化应激防御机制之间出人意料的联系。此外,还发现了不同于大肠杆菌中发挥作用的细菌二硫键形成系统。

关键问题

在这篇综述中,我们讨论了一些悬而未决的基本问题,例如 DsbD 如何利用其机制来催化还原当量穿过膜的转移,以及氧化蛋白折叠催化剂 DsbA 和 DsbC 如何与周质伴侣蛋白合作折叠分泌蛋白。

未来方向

理解 DsbD 的机制需要解决该蛋白膜结构域的结构问题。未来几年的另一个挑战将是将二硫键形成机制的知识置于全局细胞环境中,以揭示折叠催化剂和伴侣蛋白之间的相互作用。此外,还需要对工作在致病细菌中二硫键形成机制进行彻底的特征描述,以便设计针对稳定性依赖二硫键的毒力因子折叠途径的抗菌药物。

相似文献

6
How proteins form disulfide bonds.蛋白质如何形成二硫键。
Antioxid Redox Signal. 2011 Jul 1;15(1):49-66. doi: 10.1089/ars.2010.3575. Epub 2011 Mar 31.

引用本文的文献

1
Biosensor that Detects Stress Caused by Periplasmic Proteins.检测由周质蛋白引起的应激的生物传感器。
ACS Synth Biol. 2024 May 17;13(5):1477-1491. doi: 10.1021/acssynbio.3c00720. Epub 2024 Apr 27.
9
A cryptic oxidoreductase safeguards oxidative protein folding in .一种神秘的氧化还原酶在. 中保障氧化蛋白折叠。
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2208675120. doi: 10.1073/pnas.2208675120. Epub 2023 Feb 14.

本文引用的文献

6
How proteins form disulfide bonds.蛋白质如何形成二硫键。
Antioxid Redox Signal. 2011 Jul 1;15(1):49-66. doi: 10.1089/ars.2010.3575. Epub 2011 Mar 31.
8
Nonconsecutive disulfide bond formation in an essential integral outer membrane protein.非连续二硫键在必需的完整外膜蛋白中的形成。
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12245-50. doi: 10.1073/pnas.1007319107. Epub 2010 Jun 21.
9
The bacterial cell envelope.细菌的细胞包膜。
Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414. doi: 10.1101/cshperspect.a000414. Epub 2010 Apr 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验