INPAC, Institute for Nanoscale Physics and Chemistry, Semiconductor Physics Laboratory, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
ACS Nano. 2012 Sep 25;6(9):7615-23. doi: 10.1021/nn302745x. Epub 2012 Aug 28.
Here we report the results of a multifrequency (9, 20, 34, 239.2, and 336 GHz) variable-temperature continuous wave (cw) and X-band (9 GHz) pulse electron spin resonance (ESR) measurement performed at cryogenic temperatures on potassium split graphene nanoribbons (GNRs). Important experimental findings include the following: (a) The multifrequency cw ESR data infer the presence of only carbon-related paramagnetic nonbonding states, at any measured temperature, with the g value independent of microwave frequency and temperature. (b) A linear broadening of the ESR signal as a function of microwave frequency is noticed. The observed linear frequency dependence of ESR signal width points to a distribution of g factors causing the non-Lorentzian line shape, and the g broadening contribution is found to be very small. (c) The ESR process is found to be characterized by slow and fast components, whose temperature dependences could be well described by a tunneling level state model. This work not only could help in advancing the present fundamental understanding on the edge spin (or magnetic)-based properties of GNRs but also pave the way to GNR-based spin devices.
在这里,我们报告了在低温下对钾分裂石墨烯纳米带(GNRs)进行多频(9、20、34、239.2 和 336 GHz)连续波(cw)和 X 波段(9 GHz)脉冲电子自旋共振(ESR)测量的结果。重要的实验结果包括以下几点:(a)多频 cw ESR 数据推断在任何测量温度下仅存在与碳相关的顺磁非键合态,g 值与微波频率和温度无关。(b)注意到 ESR 信号随微波频率线性展宽。观察到的 ESR 信号宽度随微波频率的线性依赖表明 g 因子分布导致非洛伦兹线型,并且发现 g 展宽贡献非常小。(c)ESR 过程被发现具有慢和快两个分量,其温度依赖性可以很好地用隧道能级状态模型来描述。这项工作不仅有助于推进目前对 GNR 边缘自旋(或磁性)特性的基础理解,而且为基于 GNR 的自旋器件铺平了道路。