Suppr超能文献

耦合神经元的最小能量去同步控制

Minimum energy desynchronizing control for coupled neurons.

作者信息

Nabi Ali, Mirzadeh Mohammad, Gibou Frederic, Moehlis Jeff

机构信息

Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, 93106-5070, CA.

出版信息

J Comput Neurosci. 2013 Apr;34(2):259-71. doi: 10.1007/s10827-012-0419-3. Epub 2012 Aug 18.

Abstract

We employ optimal control theory to design an event-based, minimum energy, desynchronizing control stimulus for a network of pathologically synchronized, heterogeneously coupled neurons. This works by optimally driving the neurons to their phaseless sets, switching the control off, and letting the phases of the neurons randomize under intrinsic background noise. An event-based minimum energy input may be clinically desirable for deep brain stimulation treatment of neurological diseases, like Parkinson's disease. The event-based nature of the input results in its administration only when it is necessary, which, in general, amounts to fewer applications, and hence, less charge transfer to and from the tissue. The minimum energy nature of the input may also help prolong battery life for implanted stimulus generators. For the example considered, it is shown that the proposed control causes a considerable amount of randomization in the timing of each neuron's next spike, leading to desynchronization for the network.

摘要

我们运用最优控制理论,为病态同步、异质耦合的神经元网络设计一种基于事件的、能量最小化的去同步控制刺激。其工作原理是通过最优地驱动神经元至其无相集,关闭控制,然后让神经元的相位在内在背景噪声下随机化。基于事件的最小能量输入对于帕金森病等神经疾病的深部脑刺激治疗在临床上可能是理想的。输入的基于事件的性质导致仅在必要时进行给药,一般来说,这意味着应用次数更少,因此,与组织之间的电荷转移也更少。输入的最小能量性质还可能有助于延长植入式刺激发生器的电池寿命。对于所考虑的示例,结果表明所提出的控制会在每个神经元下次放电的时间上引起相当程度的随机化,从而导致网络去同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验