Schmalz Joseph, Kumar Gautam
Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID, United States.
Front Comput Neurosci. 2019 Sep 4;13:61. doi: 10.3389/fncom.2019.00061. eCollection 2019.
Disrupting the pathological synchronous firing patterns of neurons with high frequency stimulation is a common treatment for Parkinsonian symptoms and epileptic seizures when pharmaceutical drugs fail. In this paper, our goal is to design a desynchronization strategy for large networks of spiking neurons such that the neuronal activity of the network remains in the desynchronized regime for a long period of time after the removal of the stimulation. We develop a novel "Forced Temporal-Spike Time Stimulation (FTSTS)" strategy that harnesses the spike-timing dependent plasticity to control the synchronization of neural activity in the network by forcing the neurons in the network to artificially fire in a specific temporal pattern. Our strategy modulates the synaptic strengths of selective synapses to achieve a desired synchrony of neural activity in the network. Our simulation results show that the FTSTS strategy can effectively synchronize or desynchronize neural activity in large spiking neuron networks and keep them in the desired state for a long period of time after the removal of the external stimulation. Using simulations, we demonstrate the robustness of our strategy in desynchronizing neural activity of networks against uncertainties in the designed stimulation pulses and network parameters. Additionally, we show in simulation, how our strategy could be incorporated within the existing desynchronization strategies to improve their overall efficacy in desynchronizing large networks. Our proposed strategy provides complete control over the synchronization of neurons in large networks and can be used to either synchronize or desynchronize neural activity based on specific applications. Moreover, it can be incorporated within other desynchronization strategies to improve the efficacy of existing therapies for numerous neurological and psychiatric disorders associated with pathological synchronization.
当药物治疗无效时,用高频刺激破坏神经元的病理性同步放电模式是治疗帕金森症状和癫痫发作的常用方法。在本文中,我们的目标是为大规模脉冲神经元网络设计一种去同步策略,使网络的神经元活动在去除刺激后能长时间保持在去同步状态。我们开发了一种新颖的“强制时间 - 脉冲时间刺激(FTSTS)”策略,该策略利用脉冲时间依赖可塑性,通过迫使网络中的神经元以特定的时间模式人为放电来控制网络中神经活动的同步性。我们的策略调节选择性突触的突触强度,以实现网络中神经活动的期望同步性。我们的模拟结果表明,FTSTS策略能有效地使大规模脉冲神经元网络中的神经活动同步或去同步,并在去除外部刺激后将它们长时间保持在期望状态。通过模拟,我们证明了我们的策略在使网络神经活动去同步方面对设计的刺激脉冲和网络参数不确定性的鲁棒性。此外,我们在模拟中展示了我们的策略如何能纳入现有的去同步策略中,以提高它们在使大规模网络去同步方面的整体效果。我们提出的策略提供了对大规模网络中神经元同步的完全控制,可根据特定应用用于使神经活动同步或去同步。而且,它可以纳入其他去同步策略中,以提高现有治疗与病理性同步相关的众多神经和精神疾病疗法的疗效。