Danzl Per, Hespanha João, Moehlis Jeff
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA.
Biol Cybern. 2009 Dec;101(5-6):387-99. doi: 10.1007/s00422-009-0344-3. Epub 2009 Nov 13.
We present an event-based feedback control method for randomizing the asymptotic phase of oscillatory neurons. Phase randomization is achieved by driving the neuron's state to its phaseless set, a point at which its phase is undefined and is extremely sensitive to background noise. We consider the biologically relevant case of a fixed magnitude constraint on the stimulus signal, and show how the control objective can be accomplished in minimum time. The control synthesis problem is addressed using the minimum-time-optimal Hamilton-Jacobi-Bellman framework, which is quite general and can be applied to any spiking neuron model in the conductance-based Hodgkin-Huxley formalism. We also use this methodology to compute a feedback control protocol for optimal spike rate increase. This framework provides a straightforward means of visualizing isochrons, without actually calculating them in the traditional way. Finally, we present an extension of the phase randomizing control scheme that is applied at the population level, to a network of globally coupled neurons that are firing in synchrony. The applied control signal desynchronizes the population in a demand-controlled way.
我们提出了一种基于事件的反馈控制方法,用于使振荡神经元的渐近相位随机化。通过将神经元的状态驱动到其无相点集来实现相位随机化,在该点其相位未定义且对背景噪声极为敏感。我们考虑刺激信号存在固定幅度约束的生物学相关情况,并展示如何在最短时间内实现控制目标。使用最小时间最优汉密尔顿 - 雅可比 - 贝尔曼框架来解决控制综合问题,该框架非常通用,可应用于基于电导的霍奇金 - 赫胥黎形式主义中的任何脉冲神经元模型。我们还使用这种方法来计算用于最优提高脉冲率的反馈控制协议。该框架提供了一种直观的方法来可视化等时线,而无需以传统方式实际计算它们。最后,我们提出了相位随机化控制方案的扩展,该扩展应用于群体水平,作用于同步放电的全局耦合神经元网络。所施加的控制信号以需求控制的方式使群体去同步。