Suppr超能文献

一种定量适应性分析工作流程。

A quantitative fitness analysis workflow.

作者信息

Banks A P, Lawless C, Lydall D A

机构信息

Institute for Cell and Molecular Biosciences, Newcastle University Medical School.

出版信息

J Vis Exp. 2012 Aug 13(66):4018. doi: 10.3791/4018.

Abstract

Quantitative Fitness Analysis (QFA) is an experimental and computational workflow for comparing fitnesses of microbial cultures grown in parallel(1,2,3,4). QFA can be applied to focused observations of single cultures but is most useful for genome-wide genetic interaction or drug screens investigating up to thousands of independent cultures. The central experimental method is the inoculation of independent, dilute liquid microbial cultures onto solid agar plates which are incubated and regularly photographed. Photographs from each time-point are analyzed, producing quantitative cell density estimates, which are used to construct growth curves, allowing quantitative fitness measures to be derived. Culture fitnesses can be compared to quantify and rank genetic interaction strengths or drug sensitivities. The effect on culture fitness of any treatments added into substrate agar (e.g. small molecules, antibiotics or nutrients) or applied to plates externally (e.g. UV irradiation, temperature) can be quantified by QFA. The QFA workflow produces growth rate estimates analogous to those obtained by spectrophotometric measurement of parallel liquid cultures in 96-well or 200-well plate readers. Importantly, QFA has significantly higher throughput compared with such methods. QFA cultures grow on a solid agar surface and are therefore well aerated during growth without the need for stirring or shaking. QFA throughput is not as high as that of some Synthetic Genetic Array (SGA) screening methods(5,6). However, since QFA cultures are heavily diluted before being inoculated onto agar, QFA can capture more complete growth curves, including exponential and saturation phases(3). For example, growth curve observations allow culture doubling times to be estimated directly with high precision, as discussed previously(1). Here we present a specific QFA protocol applied to thousands of S. cerevisiae cultures which are automatically handled by robots during inoculation, incubation and imaging. Any of these automated steps can be replaced by an equivalent, manual procedure, with an associated reduction in throughput, and we also present a lower throughput manual protocol. The same QFA software tools can be applied to images captured in either workflow. We have extensive experience applying QFA to cultures of the budding yeast S. cerevisiae but we expect that QFA will prove equally useful for examining cultures of the fission yeast S. pombe and bacterial cultures.

摘要

定量适应性分析(QFA)是一种用于比较平行培养的微生物培养物适应性的实验和计算流程(1,2,3,4)。QFA可应用于对单一培养物的重点观察,但对于全基因组遗传相互作用或药物筛选(研究多达数千个独立培养物)最为有用。核心实验方法是将独立的、稀释的液体微生物培养物接种到固体琼脂平板上,进行培养并定期拍照。对每个时间点的照片进行分析,得出定量的细胞密度估计值,用于构建生长曲线,从而得出定量适应性测量值。可以比较培养物的适应性,以量化和排列遗传相互作用强度或药物敏感性。通过QFA可以量化添加到底物琼脂中的任何处理(如小分子、抗生素或营养物质)或外部施加到平板上的处理(如紫外线照射、温度)对培养物适应性的影响。QFA工作流程产生的生长速率估计值类似于通过在96孔或200孔酶标仪中对平行液体培养物进行分光光度测量获得的估计值。重要的是,与这些方法相比,QFA具有显著更高的通量。QFA培养物在固体琼脂表面生长,因此在生长过程中通气良好,无需搅拌或振荡。QFA的通量不如一些合成遗传阵列(SGA)筛选方法高(5,6)。然而,由于QFA培养物在接种到琼脂之前被大量稀释,QFA可以捕获更完整的生长曲线,包括指数期和饱和期(3)。例如,如前所述(1),生长曲线观察允许直接高精度估计培养物的倍增时间。在这里,我们展示了一种特定的QFA方案,该方案应用于数千个酿酒酵母培养物,这些培养物在接种、培养和成像过程中由机器人自动处理。这些自动化步骤中的任何一个都可以用等效的手动程序代替,通量会相应降低,我们还展示了一种通量较低的手动方案。相同的QFA软件工具可应用于两种工作流程中捕获的图像。我们在将QFA应用于芽殖酵母酿酒酵母培养物方面有丰富的经验,但我们预计QFA对于检查裂殖酵母粟酒裂殖酵母培养物和细菌培养物同样有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验