Borse Florian, Kičiatovas Dovydas, Kuosmanen Teemu, Vidal Mabel, Cabrera-Vives Guillermo, Cairns Johannes, Warringer Jonas, Mustonen Ville
Organismal and Evolutionary Biology Research Programme, Department of Computer Science, University of Helsinki, Helsinki, Finland.
Department of Computer Science, Universidad de Concepción, Concepción, Chile.
PLoS Comput Biol. 2024 Jul 22;20(7):e1011585. doi: 10.1371/journal.pcbi.1011585. eCollection 2024 Jul.
Quantitative understanding of microbial growth is an essential prerequisite for successful control of pathogens as well as various biotechnology applications. Even though the growth of cell populations has been extensively studied, microbial growth remains poorly characterised at the spatial level. Indeed, even isogenic populations growing at different locations on solid growth medium typically show significant location-dependent variability in growth. Here we show that this variability can be attributed to the initial physiological states of the populations, the interplay between populations interacting with their local environment and the diffusion of nutrients and energy sources coupling the environments. We further show how the causes of this variability change throughout the growth of a population. We use a dual approach, first applying machine learning regression models to discover that location dominates growth variability at specific times, and, in parallel, developing explicit population growth models to describe this spatial effect. In particular, treating nutrient and energy source concentration as a latent variable allows us to develop a mechanistic resource consumer model that captures growth variability across the shared environment. As a consequence, we are able to determine intrinsic growth parameters for each local population, removing confounders common to location-dependent variability in growth. Importantly, our explicit low-parametric model for the environment paves the way for massively parallel experimentation with configurable spatial niches for testing specific eco-evolutionary hypotheses.
对微生物生长进行定量理解是成功控制病原体以及开展各种生物技术应用的重要前提。尽管细胞群体的生长已得到广泛研究,但在空间层面上,微生物生长的特征仍很不明确。事实上,即使是在固体生长培养基上不同位置生长的同基因群体,其生长通常也表现出显著的位置依赖性差异。在此,我们表明这种差异可归因于群体的初始生理状态、群体与其局部环境相互作用之间的相互影响,以及耦合各环境的营养物质和能量来源的扩散。我们进一步展示了这种差异的成因在群体生长过程中是如何变化的。我们采用了一种双重方法,首先应用机器学习回归模型来发现特定时间位置主导生长差异,同时,开发明确的群体生长模型来描述这种空间效应。特别是,将营养物质和能量来源浓度视为一个潜在变量,使我们能够开发一种机械资源消耗模型,该模型能够捕捉共享环境中的生长差异。因此,我们能够确定每个局部群体的内在生长参数,消除生长中位置依赖性差异所共有的混杂因素。重要的是,我们明确的低参数环境模型为使用可配置空间生态位进行大规模并行实验以测试特定的生态进化假设铺平了道路。