Christianson David W
Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.
Chem Rev. 2017 Sep 13;117(17):11570-11648. doi: 10.1021/acs.chemrev.7b00287. Epub 2017 Aug 25.
The year 2017 marks the twentieth anniversary of terpenoid cyclase structural biology: a trio of terpenoid cyclase structures reported together in 1997 were the first to set the foundation for understanding the enzymes largely responsible for the exquisite chemodiversity of more than 80000 terpenoid natural products. Terpenoid cyclases catalyze the most complex chemical reactions in biology, in that more than half of the substrate carbon atoms undergo changes in bonding and hybridization during a single enzyme-catalyzed cyclization reaction. The past two decades have witnessed structural, functional, and computational studies illuminating the modes of substrate activation that initiate the cyclization cascade, the management and manipulation of high-energy carbocation intermediates that propagate the cyclization cascade, and the chemical strategies that terminate the cyclization cascade. The role of the terpenoid cyclase as a template for catalysis is paramount to its function, and protein engineering can be used to reprogram the cyclization cascade to generate alternative and commercially important products. Here, I review key advances in terpenoid cyclase structural and chemical biology, focusing mainly on terpenoid cyclases and related prenyltransferases for which X-ray crystal structures have informed and advanced our understanding of enzyme structure and function.
2017年是萜类环化酶结构生物学诞生20周年:1997年共同报道的三个萜类环化酶结构首次为理解主要负责80000多种萜类天然产物精妙化学多样性的酶奠定了基础。萜类环化酶催化生物学中最复杂的化学反应,因为在单一酶催化的环化反应过程中,超过一半的底物碳原子会发生键合和杂化变化。在过去的二十年里,结构、功能和计算研究揭示了启动环化级联反应的底物激活模式、推动环化级联反应的高能碳正离子中间体的管理和操纵,以及终止环化级联反应的化学策略。萜类环化酶作为催化模板的作用对其功能至关重要,蛋白质工程可用于重新编程环化级联反应,以生成替代的和具有商业重要性的产物。在此,我回顾萜类环化酶结构和化学生物学的关键进展,主要关注那些X射线晶体结构为我们理解酶的结构和功能提供了信息并推动了相关认识的萜类环化酶和相关的异戊烯基转移酶。