Environmental Science and Technology, California Institute of Technology, Pasadena, California, USA.
mBio. 2012 Aug 21;3(4). doi: 10.1128/mBio.00223-12. Print 2012.
Termites and their gut microbes engage in fascinating dietary mutualisms. Less is known about how these complex symbioses have evolved after first emerging in an insect ancestor over 120 million years ago. Here we examined a bacterial gene, formate dehydrogenase (fdhF), that is key to the mutualism in 8 species of "higher" termite (members of the Termitidae, the youngest and most biomass-abundant and species-rich termite family). Patterns of fdhF diversity in the gut communities of higher termites contrasted strongly with patterns in less-derived (more-primitive) insect relatives (wood-feeding "lower" termites and roaches). We observed phylogenetic evidence for (i) the sweeping loss of several clades of fdhF that may reflect extinctions of symbiotic protozoa and, importantly, bacteria dependent on them in the last common ancestor of all higher termites and (ii) a radiation of genes from the (possibly) single allele that survived. Sweeping gene loss also resulted in (iii) the elimination of an entire clade of genes encoding selenium (Se)-independent enzymes from higher termite gut communities, perhaps reflecting behavioral or morphological innovations in higher termites that relaxed preexisting environmental limitations of Se, a dietary trace element. Curiously, several higher termite gut communities may have subsequently reencountered Se limitation, reinventing genes for Se-independent proteins via convergent evolution. Lastly, the presence of a novel fdhF lineage within litter-feeding and subterranean higher (but not other) termites may indicate recent gene "invasion" events. These results imply that cascades of perturbation and adaptation by distinct evolutionary mechanisms have impacted the evolution of complex microbial communities in a highly successful lineage of insects.
Since patterns of relatedness between termite hosts are broadly mirrored by the relatedness of their symbiotic gut microbiota, coevolution between hosts and gut symbionts is rightly considered an important force that has shaped dietary mutualism since its inception over 120 million years ago. Apart from that concerning lateral gene or symbiont transfer between termite gut communities (for which no evidence yet exists), there has been little discussion of alternative mechanisms impacting the evolution of mutualism. Here we provide strong gene-based evidence for past environmental perturbations creating significant upheavals that continue to reverberate throughout the gut communities of species comprising a single termite lineage. We suggest that symbiont extinction events, sweeping gene losses, evolutionary radiations, relaxation and reemergence of key nutritional pressures, convergent evolution of similar traits, and recent gene invasions have all shaped gene composition in the symbiotic gut microbial communities of higher termites, currently the most dominant and successful termite family on Earth.
白蚁及其肠道微生物之间存在着引人入胜的共生关系。对于这些复杂的共生关系在 1.2 亿多年前首次出现在昆虫祖先身上后是如何进化的,我们知之甚少。在这里,我们研究了一种细菌基因,即甲酸脱氢酶(fdhF),它是 8 种“高等”白蚁(白蚁科的成员,是最年轻、生物量最大、物种最丰富的白蚁科)共生关系中的关键基因。高等白蚁肠道菌群中 fdhF 多样性的模式与衍生较少(更原始)的昆虫亲缘体(木质素食性的“低等”白蚁和蟑螂)形成鲜明对比。我们观察到了系统发育证据,表明(i)几个 fdhF 进化枝的广泛丧失,这可能反映了共生原生动物的灭绝,重要的是,在所有高等白蚁的最后共同祖先中,还依赖于它们的细菌也灭绝了,(ii)幸存的(可能)单一等位基因的辐射。横扫基因的丧失还导致(iii)高等白蚁肠道菌群中整个硒(Se)独立酶基因簇的消除,这可能反映了高等白蚁在行为或形态上的创新,放宽了 Se 的先前环境限制,Se 是一种饮食中的微量元素。奇怪的是,几个高等白蚁肠道群落可能随后再次遇到 Se 限制,通过趋同进化重新创造了 Se 独立蛋白的基因。最后,在以落叶为食和地下高等白蚁(而不是其他白蚁)中存在一种新型 fdhF 谱系,这可能表明最近发生了基因“入侵”事件。这些结果表明,不同进化机制引发的级联扰动和适应已经影响了昆虫中一个高度成功的谱系中复杂微生物群落的进化。
由于白蚁宿主之间的亲缘关系模式与它们共生肠道微生物群的亲缘关系模式大致相同,因此宿主与肠道共生体之间的共同进化被认为是自 1.2 亿多年前共生关系出现以来塑造饮食共生关系的重要力量。除了白蚁肠道群落之间侧向基因或共生体转移(目前尚无证据表明存在这种转移)之外,人们很少讨论影响共生关系进化的替代机制。在这里,我们提供了强有力的基于基因的证据,证明过去的环境干扰造成了重大动荡,这些动荡仍在继续影响着构成一个白蚁谱系的物种的肠道群落。我们认为,共生体灭绝事件、横扫基因丧失、进化辐射、关键营养压力的放松和再现、类似特征的趋同进化以及最近的基因入侵,都塑造了高等白蚁共生肠道微生物群落的基因组成,目前它们是地球上最占优势和最成功的白蚁科。