Suppr超能文献

一个简单的组蛋白密码为表观遗传学开辟了许多途径。

A simple histone code opens many paths to epigenetics.

机构信息

Niels Bohr Institute/CMOL, University of Copenhagen, Copenhagen, Denmark.

出版信息

PLoS Comput Biol. 2012;8(8):e1002643. doi: 10.1371/journal.pcbi.1002643. Epub 2012 Aug 16.

Abstract

Nucleosomes can be covalently modified by addition of various chemical groups on several of their exposed histone amino acids. These modifications are added and removed by enzymes (writers) and can be recognized by nucleosome-binding proteins (readers). Linking a reader domain and a writer domain that recognize and create the same modification state should allow nucleosomes in a particular modification state to recruit enzymes that create that modification state on nearby nucleosomes. This positive feedback has the potential to provide the alternative stable and heritable states required for epigenetic memory. However, analysis of simple histone codes involving interconversions between only two or three types of modified nucleosomes has revealed only a few circuit designs that allow heritable bistability. Here we show by computer simulations that a histone code involving alternative modifications at two histone positions, producing four modification states, combined with reader-writer proteins able to distinguish these states, allows for hundreds of different circuits capable of heritable bistability. These expanded possibilities result from multiple ways of generating two-step cooperativity in the positive feedback--through alternative pathways and an additional, novel cooperativity motif. Our analysis reveals other properties of such epigenetic circuits. They are most robust when the dominant nucleosome types are different at both modification positions and are not the type inserted after DNA replication. The dominant nucleosome types often recruit enzymes that create their own type or destroy the opposing type, but never catalyze their own destruction. The circuits appear to be evolutionary accessible; most circuits can be changed stepwise into almost any other circuit without losing heritable bistability. Thus, our analysis indicates that systems that utilize an expanded histone code have huge potential for generating stable and heritable nucleosome modification states and identifies the critical features of such systems.

摘要

核小体可以通过在其几个暴露的组蛋白氨基酸上添加各种化学基团而发生共价修饰。这些修饰是由酶(写入器)添加和去除的,可以被核小体结合蛋白(读取器)识别。将识别和创建相同修饰状态的读取器结构域和写入器结构域连接起来,应该可以使特定修饰状态的核小体招募在附近核小体上创建该修饰状态的酶。这种正反馈有可能提供表观遗传记忆所需的替代稳定且可遗传的状态。然而,对涉及两种或三种类型的修饰核小体之间相互转化的简单组蛋白密码子的分析仅揭示了少数允许遗传双稳态的电路设计。在这里,我们通过计算机模拟表明,涉及两个组蛋白位置的替代修饰的组蛋白密码子,产生四种修饰状态,结合能够区分这些状态的读取器-写入器蛋白,允许数百种不同的具有遗传双稳态能力的电路。这些扩展的可能性源于正反馈中生成两步协同作用的多种方式——通过替代途径和一个额外的新颖协同作用基序。我们的分析揭示了这些表观遗传电路的其他特性。当两种修饰位置的主要核小体类型不同并且不是 DNA 复制后插入的类型时,它们最稳健。主要核小体类型通常招募能够创建自己类型或破坏相反类型的酶,但从不催化自己的破坏。这些电路似乎在进化上是可获得的;大多数电路可以逐步改变为几乎任何其他电路,而不会失去遗传双稳态。因此,我们的分析表明,利用扩展的组蛋白密码子的系统具有产生稳定和可遗传的核小体修饰状态的巨大潜力,并确定了此类系统的关键特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验