Suppr超能文献

利用 CoNAn-SNV 对片段性癌症基因组扩增区域进行突变发现:一种用于肿瘤下一代测序的混合模型。

Mutation discovery in regions of segmental cancer genome amplifications with CoNAn-SNV: a mixture model for next generation sequencing of tumors.

机构信息

Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada.

出版信息

PLoS One. 2012;7(8):e41551. doi: 10.1371/journal.pone.0041551. Epub 2012 Aug 16.

Abstract

Next generation sequencing has now enabled a cost-effective enumeration of the full mutational complement of a tumor genome-in particular single nucleotide variants (SNVs). Most current computational and statistical models for analyzing next generation sequencing data, however, do not account for cancer-specific biological properties, including somatic segmental copy number alterations (CNAs)-which require special treatment of the data. Here we present CoNAn-SNV (Copy Number Annotated SNV): a novel algorithm for the inference of single nucleotide variants (SNVs) that overlap copy number alterations. The method is based on modelling the notion that genomic regions of segmental duplication and amplification induce an extended genotype space where a subset of genotypes will exhibit heavily skewed allelic distributions in SNVs (and therefore render them undetectable by methods that assume diploidy). We introduce the concept of modelling allelic counts from sequencing data using a panel of Binomial mixture models where the number of mixtures for a given locus in the genome is informed by a discrete copy number state given as input. We applied CoNAn-SNV to a previously published whole genome shotgun data set obtained from a lobular breast cancer and show that it is able to discover 21 experimentally revalidated somatic non-synonymous mutations in a lobular breast cancer genome that were not detected using copy number insensitive SNV detection algorithms. Importantly, ROC analysis shows that the increased sensitivity of CoNAn-SNV does not result in disproportionate loss of specificity. This was also supported by analysis of a recently published lymphoma genome with a relatively quiescent karyotype, where CoNAn-SNV showed similar results to other callers except in regions of copy number gain where increased sensitivity was conferred. Our results indicate that in genomically unstable tumors, copy number annotation for SNV detection will be critical to fully characterize the mutational landscape of cancer genomes.

摘要

下一代测序技术现在已经能够以经济有效的方式对肿瘤基因组的全部突变进行计数——特别是单核苷酸变异(SNV)。然而,目前用于分析下一代测序数据的大多数计算和统计模型都没有考虑到癌症特有的生物学特性,包括体细胞片段拷贝数改变(CNAs)——这需要对数据进行特殊处理。在这里,我们提出了 CoNAn-SNV(带拷贝数注释的 SNV):一种用于推断重叠拷贝数改变的单核苷酸变异(SNV)的新算法。该方法基于建模的概念,即片段复制和扩增的基因组区域会诱导扩展的基因型空间,其中一部分基因型在 SNV 中会表现出严重偏斜的等位基因分布(因此,使用假设二倍体的方法无法检测到它们)。我们引入了使用二项式混合模型对测序数据中的等位基因计数进行建模的概念,其中基因组中给定位置的混合物数量由作为输入的离散拷贝数状态来通知。我们将 CoNAn-SNV 应用于先前发表的来自乳腺小叶癌的全基因组鸟枪法数据集中,并表明它能够发现 21 个在乳腺小叶癌基因组中经过实验重新验证的体细胞非同义突变,而这些突变使用不敏感于拷贝数的 SNV 检测算法无法检测到。重要的是,ROC 分析表明,CoNAn-SNV 的灵敏度增加不会导致特异性不成比例地降低。这也得到了对相对静止核型的淋巴瘤基因组的最近发表分析的支持,除了在拷贝数增益区域外,CoNAn-SNV 的结果与其他调用者相似,在这些区域中赋予了更高的灵敏度。我们的结果表明,在基因组不稳定的肿瘤中,SNV 检测的拷贝数注释对于全面描述癌症基因组的突变景观将是至关重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfcd/3420914/14934c882144/pone.0041551.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验