Suppr超能文献

SCARLET:具有拷贝数约束的突变缺失的单细胞肿瘤系统发育推断。

SCARLET: Single-cell tumor phylogeny inference with copy-number constrained mutation losses.

机构信息

Department of Computer Science, Brown University, Providence, RI 02912.

Department of Computer Science, Princeton University, Princeton, NJ 08540.

出版信息

Cell Syst. 2020 Apr 22;10(4):323-332.e8. doi: 10.1016/j.cels.2020.04.001.

Abstract

A small number of somatic mutations drive the development of cancer, but all somatic mutations are markers of the evolutionary history of a tumor. Prominent methods to construct phylogenies from single-cell sequencing data use single-nucleotide variants (SNVs) as markers but fail to adequately account for copy-number aberrations (CNAs), which can overlap SNVs and result in SNV losses. Here, we introduce SCARLET, an algorithm that infers tumor phylogenies from single-cell DNA sequencing data while accounting for both CNA-driven loss of SNVs and sequencing errors. SCARLET outperforms existing methods on simulated data, with more accurate inference of the order in which mutations were acquired and the mutations present in individual cells. Using a single-cell dataset from a patient with colorectal cancer, SCARLET constructs a tumor phylogeny that is consistent with the observed CNAs and suggests an alternate origin for the patient's metastases. SCARLET is available at: github.com/raphael-group/scarlet.

摘要

少数体细胞突变驱动癌症的发展,但所有体细胞突变都是肿瘤进化史的标志物。从单细胞测序数据构建系统发生树的突出方法使用单核苷酸变体 (SNV) 作为标记,但不能充分考虑到拷贝数异常 (CNA),CNA 可与 SNV 重叠并导致 SNV 丢失。在这里,我们引入了 SCARLET,这是一种从单细胞 DNA 测序数据推断肿瘤系统发生树的算法,同时考虑了 CNA 驱动的 SNV 丢失和测序错误。SCARLET 在模拟数据上的表现优于现有方法,更准确地推断了突变获得的顺序和单个细胞中存在的突变。使用来自结直肠癌患者的单细胞数据集,SCARLET 构建了与观察到的 CNA 一致的肿瘤系统发生树,并提示了患者转移的另一种起源。SCARLET 可在:github.com/raphael-group/scarlet。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19e6/7451135/680ccfcd9412/nihms-1587836-f0001.jpg

相似文献

引用本文的文献

4
The landscape of cell lineage tracing.细胞谱系追踪的概况。
Sci China Life Sci. 2025 Feb 28. doi: 10.1007/s11427-024-2751-6.

本文引用的文献

5
CALDER: Inferring Phylogenetic Trees from Longitudinal Tumor Samples.从纵向肿瘤样本推断系统发育树。
Cell Syst. 2019 Jun 26;8(6):514-522.e5. doi: 10.1016/j.cels.2019.05.010. Epub 2019 Jun 19.
9
Genome doubling shapes the evolution and prognosis of advanced cancers.基因组加倍塑造了晚期癌症的进化和预后。
Nat Genet. 2018 Aug;50(8):1189-1195. doi: 10.1038/s41588-018-0165-1. Epub 2018 Jul 16.
10
Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.多个肿瘤样本的系统发育拷贝数分解
J Comput Biol. 2018 Jul;25(7):689-708. doi: 10.1089/cmb.2017.0253. Epub 2018 Apr 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验