Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Sci Rep. 2012;2:596. doi: 10.1038/srep00596. Epub 2012 Aug 22.
The conventional order parameters in quantum matters are often characterized by 'spontaneous' broken symmetries. However, sometimes the broken symmetries may blend with the invariant symmetries to lead to mysterious emergent phases. The heavy fermion metal URu2Si2 is one such example, where the order parameter responsible for a second-order phase transition at Th=17.5 K has remained a long-standing mystery. Here we propose via ab-initio calculation and effective model that a novel spin-orbit density wave in the f-states is responsible for the hidden-order phase in URu2Si2. The staggered spin-orbit order spontaneously breaks rotational, and translational symmetries while time-reversal symmetry remains intact. Thus it is immune to pressure, but can be destroyed by magnetic field even at T=0 K, that means at a quantum critical point. We compute topological index of the order parameter to show that the hidden order is topologically invariant. Finally, some verifiable predictions are presented.
在量子物质中,常规的序参量通常以“自发”的对称破缺为特征。然而,有时对称破缺可能与不变对称混合,导致神秘的涌现相。重费米子金属 URu2Si2 就是这样的一个例子,其中负责在 Th=17.5 K 处发生二级相变的序参量一直是一个长期存在的谜团。在这里,我们通过第一性原理计算和有效模型提出,f 态中的新型自旋轨道密度波是 URu2Si2 中隐藏有序相的原因。交错的自旋轨道序自发地打破旋转和平移对称性,而时间反演对称性保持不变。因此,它不受压力的影响,但即使在 T=0 K 时,也就是在量子临界点时,也可以被磁场破坏。我们计算了序参量的拓扑指标,以表明隐藏的顺序是拓扑不变的。最后,提出了一些可验证的预测。