Suppr超能文献

从路径熵最大化推导出主方程。

A derivation of the master equation from path entropy maximization.

机构信息

Department of Bioinformatics and Life Science, Soongsil University, Seoul, South Korea.

出版信息

J Chem Phys. 2012 Aug 21;137(7):074103. doi: 10.1063/1.4743955.

Abstract

The master equation and, more generally, Markov processes are routinely used as models for stochastic processes. They are often justified on the basis of randomization and coarse-graining assumptions. Here instead, we derive nth-order Markov processes and the master equation as unique solutions to an inverse problem. We find that when constraints are not enough to uniquely determine the stochastic model, an nth-order Markov process emerges as the unique maximum entropy solution to this otherwise underdetermined problem. This gives a rigorous alternative for justifying such models while providing a systematic recipe for generalizing widely accepted stochastic models usually assumed to follow from the first principles.

摘要

主方程,更一般地说,马尔可夫过程通常被用作随机过程的模型。它们通常基于随机化和粗粒化假设来证明。在这里,我们则将 n 阶马尔可夫过程和主方程作为反问题的唯一解来推导。我们发现,当约束不足以唯一确定随机模型时,n 阶马尔可夫过程会作为该未完全确定问题的唯一最大熵解而出现。这为证明此类模型提供了一种严格的替代方法,同时为推广通常被认为源自第一性原理的广泛接受的随机模型提供了系统的方法。

相似文献

1
A derivation of the master equation from path entropy maximization.
J Chem Phys. 2012 Aug 21;137(7):074103. doi: 10.1063/1.4743955.
2
Markov processes follow from the principle of maximum caliber.
J Chem Phys. 2012 Feb 14;136(6):064108. doi: 10.1063/1.3681941.
3
Family tree of Markov models in systems biology.
IET Syst Biol. 2007 Jul;1(4):247-54. doi: 10.1049/iet-syb:20070017.
4
Stationary properties of maximum-entropy random walks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042149. doi: 10.1103/PhysRevE.92.042149. Epub 2015 Oct 23.
5
Information flow and information production in a population system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011110. doi: 10.1103/PhysRevE.84.011110. Epub 2011 Jul 11.
6
Path summation formulation of the master equation.
Phys Rev Lett. 2006 Jun 2;96(21):210602. doi: 10.1103/PhysRevLett.96.210602. Epub 2006 Jun 1.
7
Organisation-Oriented Coarse Graining and Refinement of Stochastic Reaction Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1152-1166. doi: 10.1109/TCBB.2018.2804395. Epub 2018 Feb 9.
8
Quantitative comparison of alternative methods for coarse-graining biological networks.
J Chem Phys. 2013 Sep 28;139(12):121905. doi: 10.1063/1.4812768.
9
On the origins of approximations for stochastic chemical kinetics.
J Chem Phys. 2005 Oct 22;123(16):164115. doi: 10.1063/1.2062048.
10
Quasi-Entropy Closure: a fast and reliable approach to close the moment equations of the Chemical Master Equation.
Bioinformatics. 2022 Sep 15;38(18):4352-4359. doi: 10.1093/bioinformatics/btac501.

引用本文的文献

1
Avoiding matrix exponentials for large transition rate matrices.
J Chem Phys. 2024 Mar 7;160(9). doi: 10.1063/5.0190527.
2
Fluorescence Microscopy: a statistics-optics perspective.
ArXiv. 2023 Oct 17:arXiv:2304.01456v3.
3
Inferring a network from dynamical signals at its nodes.
PLoS Comput Biol. 2020 Nov 30;16(11):e1008435. doi: 10.1371/journal.pcbi.1008435. eCollection 2020 Nov.
4
The Maximum Caliber Variational Principle for Nonequilibria.
Annu Rev Phys Chem. 2020 Apr 20;71:213-238. doi: 10.1146/annurev-physchem-071119-040206. Epub 2020 Feb 19.
5
Quantitative Kinetic Models from Intravital Microscopy: A Case Study Using Hepatic Transport.
J Phys Chem B. 2019 Aug 29;123(34):7302-7312. doi: 10.1021/acs.jpcb.9b04729. Epub 2019 Aug 15.
6
An introduction to the maximum entropy approach and its application to inference problems in biology.
Heliyon. 2018 Apr 13;4(4):e00596. doi: 10.1016/j.heliyon.2018.e00596. eCollection 2018 Apr.
7
Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models.
PLoS Comput Biol. 2017 Oct 2;13(10):e1005762. doi: 10.1371/journal.pcbi.1005762. eCollection 2017 Oct.
8
Single molecule conformational memory extraction: p5ab RNA hairpin.
J Phys Chem B. 2014 Jun 19;118(24):6597-603. doi: 10.1021/jp500611f. Epub 2014 Jun 5.

本文引用的文献

1
Teaching the principles of statistical dynamics.
Am J Phys. 2006 Feb 1;74(2):123-133. doi: 10.1119/1.2142789.
2
Markov processes follow from the principle of maximum caliber.
J Chem Phys. 2012 Feb 14;136(6):064108. doi: 10.1063/1.3681941.
4
Everything you wanted to know about Markov State Models but were afraid to ask.
Methods. 2010 Sep;52(1):99-105. doi: 10.1016/j.ymeth.2010.06.002. Epub 2010 Jun 4.
6
Generic schemes for single-molecule kinetics. 1: Self-consistent pathway solutions for renewal processes.
J Phys Chem B. 2008 Oct 16;112(41):12867-80. doi: 10.1021/jp803347m. Epub 2008 Sep 25.
7
Maximum Caliber: a variational approach applied to two-state dynamics.
J Chem Phys. 2008 May 21;128(19):194102. doi: 10.1063/1.2918345.
8
Generating function methods in single-molecule spectroscopy.
Acc Chem Res. 2006 Jun;39(6):363-73. doi: 10.1021/ar050028l.
9
Determination of rate distributions from kinetic experiments.
Biophys J. 1992 Jan;61(1):235-45. doi: 10.1016/S0006-3495(92)81830-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验