Suppr超能文献

极端嗜热细菌 Caldicellulosiruptor bescii 的无细胞细胞外纤维素酶/半纤维素酶系统对微晶纤维素和未经预处理的植物生物质的降解。

Degradation of microcrystalline cellulose and non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase system from the extreme thermophilic bacterium Caldicellulosiruptor bescii.

机构信息

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.

出版信息

J Biosci Bioeng. 2013 Jan;115(1):64-70. doi: 10.1016/j.jbiosc.2012.07.019. Epub 2012 Aug 23.

Abstract

Caldicellulosiruptor bescii is a cellulolytic/hemicellulolytic anaerobe, which extracellularly secretes various proteins, including multidomain cellulases with two-catalytic domains, for plant biomass degradation. Degradation by C. bescii cells has been well characterized, but degradation by the cell-free extracellular cellulase/hemicellulase system (CEC) of C. bescii has not been as well studied. In the present study, C. bescii CEC was prepared from cell-free culture supernatant, and the degradation properties for defined substrates and non-pretreated plant biomass were characterized. Four multidomain cellulases (Cbes_1857, Cbes_1859, Cbes_1865, and Cbes_1867), composed of the glycoside hydrolase families 5, 9, 10, 44, and 48, were the major enzymes identified in the CEC by mass spectrometry. The CEC degraded xylan, mannose-based substrates, β-1,4-linked glucans, including microcrystalline cellulose (Avicel), and non-pretreated timothy grass and rice straw. However, degradation of chitin, pectin, dextran, and wheat starch was not observed. The optimum temperatures for degradation activities were 75°C for timothy grass and Avicel, 85°C for carboxylmethyl cellulose, and >85°C for xylan. The optimum pH for these substrates was 5-6. The degradation activities were compared with a CEC derived from the fungus Trichoderma reesei, the most common enzyme used for plant biomass saccharification. The amounts of degraded Avicel, timothy grass, and rice straw by C. bescii CEC were 2.2-2.4-fold larger than those of T. reesei CEC. The high hydrolytic activity of C. bescii CEC might be attributed to the two-catalytic domain architecture of the cellulases.

摘要

贝氏考尔德氏菌是一种纤维二糖/半纤维素分解的厌氧菌,它会在细胞外分泌多种蛋白质,包括具有两个催化结构域的多结构域纤维素酶,用于植物生物质的降解。C. bescii 细胞的降解已得到很好的描述,但 C. bescii 无细胞细胞外纤维素酶/半纤维素酶系统(CEC)的降解尚未得到很好的研究。在本研究中,从无细胞培养上清液中制备了 C. bescii CEC,并对其对定义底物和未经预处理的植物生物质的降解特性进行了表征。通过质谱法鉴定了 CEC 中的四种多结构域纤维素酶(Cbes_1857、Cbes_1859、Cbes_1865 和 Cbes_1867),它们由糖苷水解酶家族 5、9、10、44 和 48 组成。CEC 降解了木聚糖、基于甘露糖的底物、β-1,4 连接的葡聚糖,包括微晶纤维素(Avicel)和未经预处理的梯牧草和水稻秸秆。然而,未观察到壳聚糖、果胶、葡聚糖和小麦淀粉的降解。降解活性的最佳温度为梯牧草和 Avicel 的 75°C、羧甲基纤维素的 85°C 和木聚糖的>85°C。这些底物的最佳 pH 值为 5-6。将这些活性与源自真菌里氏木霉的 CEC 进行了比较,里氏木霉是用于植物生物质糖化的最常用的酶。C. bescii CEC 降解 Avicel、梯牧草和水稻秸秆的量比 T. reesei CEC 高出 2.2-2.4 倍。C. bescii CEC 具有高水解活性可能归因于纤维素酶的双催化结构域结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验