Suppr超能文献

任务相关成分分析在功能神经影像学中的应用及在近红外光谱数据中的应用。

Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data.

机构信息

Central Research Laboratory, Hitachi, Ltd., 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan.

出版信息

Neuroimage. 2013 Jan 1;64:308-27. doi: 10.1016/j.neuroimage.2012.08.044. Epub 2012 Aug 24.

Abstract

Reproducibility of experimental results lies at the heart of scientific disciplines. Here we propose a signal processing method that extracts task-related components by maximizing the reproducibility during task periods from neuroimaging data. Unlike hypothesis-driven methods such as general linear models, no specific time courses are presumed, and unlike data-driven approaches such as independent component analysis, no arbitrary interpretation of components is needed. Task-related components are constructed by a linear, weighted sum of multiple time courses, and its weights are optimized so as to maximize inter-block correlations (CorrMax) or covariances (CovMax). Our analysis method is referred to as task-related component analysis (TRCA). The covariance maximization is formulated as a Rayleigh-Ritz eigenvalue problem, and corresponding eigenvectors give candidates of task-related components. In addition, a systematic statistical test based on eigenvalues is proposed, so task-related and -unrelated components are classified objectively and automatically. The proposed test of statistical significance is found to be independent of the degree of autocorrelation in data if the task duration is sufficiently longer than the temporal scale of autocorrelation, so TRCA can be applied to data with autocorrelation without any modification. We demonstrate that simple extensions of TRCA can provide most distinctive signals for two tasks and can integrate multiple modalities of information to remove task-unrelated artifacts. TRCA was successfully applied to synthetic data as well as near-infrared spectroscopy (NIRS) data of finger tapping. There were two statistically significant task-related components; one was a hemodynamic response, and another was a piece-wise linear time course. In summary, we conclude that TRCA has a wide range of applications in multi-channel biophysical and behavioral measurements.

摘要

实验结果的可重复性是科学学科的核心。在这里,我们提出了一种信号处理方法,该方法通过从神经影像学数据中最大化任务期间的可重复性来提取与任务相关的成分。与假设驱动的方法(例如广义线性模型)不同,不需要假定特定的时间过程,也与数据驱动的方法(例如独立成分分析)不同,不需要对成分进行任意解释。与任务相关的成分是通过多个时间过程的线性、加权和构建的,并且其权重被优化为最大化块间相关性(CorrMax)或协方差(CovMax)。我们的分析方法称为与任务相关的成分分析(TRCA)。协方差最大化被表述为瑞利-里兹特征值问题,并且相应的特征向量给出了与任务相关的成分的候选者。此外,提出了一种基于特征值的系统统计检验,以便客观和自动地分类与任务相关和无关的成分。如果任务持续时间足够长于自相关的时间尺度,则发现所提出的统计显着性检验与数据中的自相关程度无关,因此 TRCA 可以应用于具有自相关而无需任何修改的数据。我们证明,TRCA 的简单扩展可以为两个任务提供最独特的信号,并可以集成多种信息模态以去除与任务无关的伪影。TRCA 成功地应用于合成数据以及近红外光谱(NIRS)的手指敲击数据。有两个具有统计学意义的与任务相关的成分;一个是血液动力学响应,另一个是分段线性时间过程。总之,我们得出结论,TRCA 在多通道生物物理和行为测量中有广泛的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验