Suppr超能文献

分层贝叶斯扩散光学层析成像算法的多主体多任务实验验证

Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm.

作者信息

Yamashita Okito, Shimokawa Takeaki, Aisu Ryota, Amita Takashi, Inoue Yoshihiro, Sato Masa-Aki

机构信息

Neural Information Analysis Laboratories, ATR, 2-2-2 Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan; Brain Functional Imaging Technologies Group, CiNet, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan.

Neural Information Analysis Laboratories, ATR, 2-2-2 Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan.

出版信息

Neuroimage. 2016 Jul 15;135:287-99. doi: 10.1016/j.neuroimage.2016.04.068. Epub 2016 May 3.

Abstract

Diffuse optical tomography (DOT) is an emerging technology for improving the spatial resolution and spatial specificity of conventional multi-channel near-infrared spectroscopy (NIRS) by the use of high-density measurements and an image reconstruction algorithm. We recently proposed a hierarchical Bayesian DOT algorithm that allows for accurate simultaneous reconstruction of scalp and cortical hemodynamic changes, and verified its performance with a phantom experiment, a computer simulation, and experimental data from one human subject. We extend our previous human case study to a multi-subject, multi-task study, to demonstrate the validity of the algorithm on a wider population and varied task conditions. We measured brain activity during three graded tasks (hand movement, index finger movement, and no-movement), in 12 subjects, using high-density NIRS and functional magnetic resonance imaging (fMRI), acquired in different sessions. The reconstruction performance of our algorithm, and the current gold-standard method for DOT image reconstruction, were evaluated using the blood-oxygenation-level-dependent (BOLD) signals of the fMRI as a reference. In comparison with the BOLD signals, our method achieved a median localization error of 6 and 8mm, and a spatial-pattern similarity of 0.6 and 0.4 for the hand and finger tasks, respectively. It also did not reconstruct any activity in the no-movement task. Compared with the current gold-standard method, the new method showed fewer false positives, which resulted in improved spatial-pattern similarity, although the localization errors of the main activity clusters were comparable.

摘要

扩散光学断层扫描(DOT)是一种新兴技术,通过使用高密度测量和图像重建算法来提高传统多通道近红外光谱(NIRS)的空间分辨率和空间特异性。我们最近提出了一种分层贝叶斯DOT算法,该算法能够准确地同时重建头皮和皮层的血流动力学变化,并通过体模实验、计算机模拟以及一名人类受试者的实验数据验证了其性能。我们将之前的人类案例研究扩展为多受试者、多任务研究,以证明该算法在更广泛人群和不同任务条件下的有效性。我们使用高密度NIRS和功能磁共振成像(fMRI)在不同时间段对12名受试者在三个分级任务(手部运动、食指运动和无运动)期间的大脑活动进行了测量。以fMRI的血氧水平依赖(BOLD)信号作为参考,评估了我们算法以及当前DOT图像重建的金标准方法的重建性能。与BOLD信号相比,我们的方法在手部和手指任务中的定位误差中位数分别为6毫米和8毫米,空间模式相似度分别为0.6和0.4。在无运动任务中,该方法也未重建出任何活动。与当前的金标准方法相比,新方法的假阳性较少,这导致空间模式相似度提高,尽管主要活动簇的定位误差相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验