Suppr超能文献

人脸图像的真实性可以从 EEG 反应的非线性调制中解码出来。

Realness of face images can be decoded from non-linear modulation of EEG responses.

机构信息

Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

Department of Vision and Imaging Technologies, Fraunhofer HHI, Berlin, Germany.

出版信息

Sci Rep. 2024 Mar 7;14(1):5683. doi: 10.1038/s41598-024-56130-1.

Abstract

Artificially created human faces play an increasingly important role in our digital world. However, the so-called uncanny valley effect may cause people to perceive highly, yet not perfectly human-like faces as eerie, bringing challenges to the interaction with virtual agents. At the same time, the neurocognitive underpinnings of the uncanny valley effect remain elusive. Here, we utilized an electroencephalography (EEG) dataset of steady-state visual evoked potentials (SSVEP) in which participants were presented with human face images of different stylization levels ranging from simplistic cartoons to actual photographs. Assessing neuronal responses both in frequency and time domain, we found a non-linear relationship between SSVEP amplitudes and stylization level, that is, the most stylized cartoon images and the real photographs evoked stronger responses than images with medium stylization. Moreover, realness of even highly similar stylization levels could be decoded from the EEG data with task-related component analysis (TRCA). Importantly, we also account for confounding factors, such as the size of the stimulus face's eyes, which previously have not been adequately addressed. Together, this study provides a basis for future research and neuronal benchmarking of real-time detection of face realness regarding three aspects: SSVEP-based neural markers, efficient classification methods, and low-level stimulus confounders.

摘要

人工创建的人脸在我们的数字世界中扮演着越来越重要的角色。然而,所谓的“诡异谷效应”可能会导致人们将高度逼真但不够拟人化的面孔视为怪异,从而给与虚拟代理的交互带来挑战。同时,诡异谷效应的神经认知基础仍然难以捉摸。在这里,我们利用了稳态视觉诱发电位(SSVEP)的脑电图(EEG)数据集,其中参与者呈现了不同风格化程度的人脸图像,从简单的卡通到真实的照片。通过评估频率和时域中的神经元反应,我们发现 SSVEP 振幅与风格化程度之间存在非线性关系,即最具风格化的卡通图像和真实照片比具有中等风格化的图像引起更强的反应。此外,即使是高度相似的风格化水平的真实感也可以通过任务相关成分分析(TRCA)从 EEG 数据中解码出来。重要的是,我们还考虑了以前没有充分解决的混杂因素,例如刺激人脸眼睛的大小。总的来说,这项研究为未来的研究提供了基础,为实时检测人脸的真实感提供了三个方面的神经基准:基于 SSVEP 的神经标记、高效的分类方法和低级刺激混杂因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验