Suppr超能文献

用于研究机械张力对神经干细胞行为影响的微图案拉伸系统。

Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior.

机构信息

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.

出版信息

Nanomedicine. 2013 Apr;9(3):345-55. doi: 10.1016/j.nano.2012.07.008. Epub 2012 Aug 24.

Abstract

UNLABELLED

In this study, we developed a feasible and reliable stretching platform combined with photolithography and microfluidic techniques to investigate the effect of directional tensile force and guiding microchannel on neural stem cell (NSC) behavior. Different stretching modes and culture conditions were conducted to investigate the mechanoresponse of NSCs on micropatterned substrate and to verify the effects of tension on NSCs maturation, axon sprouting, neurite outgrowth and orientation. From the results, we found that neurite extension and axon elongation were significantly enhanced and neurites were more directional orientated to parallel direction as stretching was experienced. The mechanical tension apparently influenced NSCs differentiation toward neuronal cells under stretching condition. The neuronal maturity also showed a significant difference when compared with parallel and vertical micropatterned channels. It is suggested that mechanical tension not only can guide neurites orientation and direction, but also promote their elongation length and trigger neural stem cells differentiation into mature neuronal cells.

FROM THE CLINICAL EDITOR

This group of investigators report the development of a feasible and reliable stretching platform combined with photolithography and microfluidic techniques to investigate the effects of directional tensile force and guiding microchannel on neural stem cell behavior. They demonstrate that neurite extension and axon elongation could be significantly enhanced, and neuronal maturity can also be improved.

摘要

本研究结合光光刻和微流控技术开发了一种可行且可靠的拉伸平台,以研究定向拉伸力和导向微通道对神经干细胞(NSC)行为的影响。进行了不同的拉伸模式和培养条件,以研究 NSC 在微图案化基板上的力响应,并验证张力对 NSCs 成熟、轴突发芽、神经突生长和取向的影响。结果表明,随着拉伸的进行,神经突的延伸和轴突的伸长明显增强,并且神经突更朝向平行方向定向。机械张力明显影响拉伸条件下 NSCs 向神经元细胞的分化。与平行和垂直微图案通道相比,神经元成熟度也表现出显著差异。这表明机械张力不仅可以引导神经突的取向和方向,还可以促进它们的伸长长度,并促使神经干细胞分化为成熟的神经元细胞。

从临床编辑的角度来看

本研究小组报告了一种可行且可靠的拉伸平台的开发,该平台结合了光光刻和微流控技术,以研究定向拉伸力和导向微通道对神经干细胞行为的影响。他们证明,神经突的延伸和轴突的伸长可以显著增强,神经元的成熟度也可以提高。

相似文献

1
Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior.
Nanomedicine. 2013 Apr;9(3):345-55. doi: 10.1016/j.nano.2012.07.008. Epub 2012 Aug 24.
3
Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells.
Small. 2012 Sep 24;8(18):2869-77. doi: 10.1002/smll.201200715. Epub 2012 Jul 2.
4
miR-29a Promotes the Neurite Outgrowth of Rat Neural Stem Cells by Targeting Extracellular Matrix to Repair Brain Injury.
Stem Cells Dev. 2020 May 1;29(9):599-614. doi: 10.1089/scd.2019.0174. Epub 2020 Feb 24.
5
Identification of Neural Stem Cells from Postnatal Mouse Auditory Cortex In Vitro.
Stem Cells Dev. 2019 Jul 1;28(13):860-870. doi: 10.1089/scd.2018.0247. Epub 2019 May 29.
6
Extending neurites sense the depth of the underlying topography during neuronal differentiation and contact guidance.
Biomaterials. 2014 Sep;35(27):7750-61. doi: 10.1016/j.biomaterials.2014.06.008. Epub 2014 Jun 19.
10
Simultaneous engagement of mechanical stretching and surface pattern promotes cardiomyogenic differentiation of human mesenchymal stem cells.
J Biosci Bioeng. 2017 Feb;123(2):252-258. doi: 10.1016/j.jbiosc.2016.07.020. Epub 2016 Aug 18.

引用本文的文献

1
Stress landscape of folding brain serves as a map for axonal pathfinding.
Nat Commun. 2025 Jan 30;16(1):1187. doi: 10.1038/s41467-025-56362-3.
2
Mechanical Actuation of Organoids in Synthetic Microenvironments.
Methods Mol Biol. 2024;2764:225-245. doi: 10.1007/978-1-0716-3674-9_15.
3
Engineered cell culture microenvironments for mechanobiology studies of brain neural cells.
Front Bioeng Biotechnol. 2022 Dec 14;10:1096054. doi: 10.3389/fbioe.2022.1096054. eCollection 2022.
6
Physical Cues of Matrices Reeducate Nerve Cells.
Front Cell Dev Biol. 2021 Sep 27;9:731170. doi: 10.3389/fcell.2021.731170. eCollection 2021.
7
Crosstalk between Bone and Nerves within Bone.
Adv Sci (Weinh). 2021 Feb 10;8(7):2003390. doi: 10.1002/advs.202003390. eCollection 2021 Apr.
8
Effect of Cyclic Stretch on Neuron Reorientation and Axon Outgrowth.
Front Bioeng Biotechnol. 2020 Dec 14;8:597867. doi: 10.3389/fbioe.2020.597867. eCollection 2020.
9
Cyclic Stretch of Either PNS or CNS Located Nerves Can Stimulate Neurite Outgrowth.
Cells. 2020 Dec 28;10(1):32. doi: 10.3390/cells10010032.
10
Advanced 4D Bioprinting Technologies for Brain Tissue Modeling and Study.
Int J Smart Nano Mater. 2019;10(3):177-204. doi: 10.1080/19475411.2019.1631899. Epub 2019 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验