Suppr超能文献

用于脑组织建模与研究的先进4D生物打印技术

Advanced 4D Bioprinting Technologies for Brain Tissue Modeling and Study.

作者信息

Esworthy Timothy J, Miao Shida, Lee Se-Jun, Zhou Xuan, Cui Haitao, Zuo Yi Y, Zhang Lijie Grace

机构信息

Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA.

Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.

出版信息

Int J Smart Nano Mater. 2019;10(3):177-204. doi: 10.1080/19475411.2019.1631899. Epub 2019 Jul 3.

Abstract

Although the process by which the cortical tissues of the brain fold has been the subject of considerable study and debate over the past few decades, a single mechanistic description of the phenomenon has yet to be fully accepted. Rather, two competing explanations of cortical folding have arisen in recent years; known as the axonal tension and the differential tangential expansion models. In the present review, these two models are introduced by analyzing the computational, theoretical, materials-based, and cell studies which have yielded them. Then Four-dimensional bioprinting is presented as a powerful technology which can not only be used to test both models of cortical folding , but can also be used to explore the reciprocal effects that folding associated mechanical stresses may have on neural development. Therein, the fabrication of "smart" tissue models which can accurately simulate the folding process and recapitulate physiologically relevant stresses are introduced. We also provide a general description of both cortical neurobiology as well as the cellular basis of cortical folding. Our discussion also entails an overview of both 3D and 4D bioprinting technologies, as well as a brief commentary on recent advancements in printed central nervous system tissue engineering.

摘要

尽管在过去几十年里,大脑皮质组织折叠的过程一直是大量研究和争论的主题,但对这一现象的单一机械描述尚未得到充分认可。相反,近年来出现了两种相互竞争的皮质折叠解释;即轴突张力模型和差异切向扩张模型。在本综述中,通过分析产生这两种模型的计算、理论、基于材料的和细胞研究来介绍这两种模型。然后介绍了四维生物打印技术,它不仅可以用于测试两种皮质折叠模型,还可以用于探索折叠相关机械应力可能对神经发育产生的相互作用。其中,介绍了能够精确模拟折叠过程并重现生理相关应力的“智能”组织模型的制造。我们还对皮质神经生物学以及皮质折叠的细胞基础进行了总体描述。我们的讨论还包括对三维和四维生物打印技术的概述,以及对打印中枢神经系统组织工程最新进展的简要评论。

相似文献

1
Advanced 4D Bioprinting Technologies for Brain Tissue Modeling and Study.
Int J Smart Nano Mater. 2019;10(3):177-204. doi: 10.1080/19475411.2019.1631899. Epub 2019 Jul 3.
2
Recent Advances in 4D Bioprinting.
Biotechnol J. 2020 Jan;15(1):e1900086. doi: 10.1002/biot.201900086. Epub 2019 Sep 20.
3
3D bioprinting of tissues and organs for regenerative medicine.
Adv Drug Deliv Rev. 2018 Jul;132:296-332. doi: 10.1016/j.addr.2018.07.004. Epub 2018 Jul 7.
4
4D Biofabrication: Materials, Methods, and Applications.
Adv Healthc Mater. 2018 Sep;7(17):e1800412. doi: 10.1002/adhm.201800412. Epub 2018 Jul 5.
5
3D bioprinting for drug discovery and development in pharmaceutics.
Acta Biomater. 2017 Jul 15;57:26-46. doi: 10.1016/j.actbio.2017.05.025. Epub 2017 May 10.
6
Organ Bioprinting: Are We There Yet?
Adv Healthc Mater. 2018 Jan;7(1). doi: 10.1002/adhm.201701018. Epub 2017 Nov 29.
7
Challenges in Bio-fabrication of Organoid Cultures.
Adv Exp Med Biol. 2018;1107:53-71. doi: 10.1007/5584_2018_216.
8
4D Bioprinting for Biomedical Applications.
Trends Biotechnol. 2016 Sep;34(9):746-756. doi: 10.1016/j.tibtech.2016.03.004. Epub 2016 Apr 4.
9
Tissue Engineering Applications of Three-Dimensional Bioprinting.
Cell Biochem Biophys. 2015 Jul;72(3):777-82. doi: 10.1007/s12013-015-0531-x.
10
Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits.
Biomaterials. 2018 Dec;186:44-63. doi: 10.1016/j.biomaterials.2018.09.010. Epub 2018 Sep 12.

引用本文的文献

1
3D Printing for Neural Repair: Bridging the Gap in Regenerative Medicine.
Adv Mater. 2025 Sep;37(36):e07590. doi: 10.1002/adma.202507590. Epub 2025 Jul 30.
2
Catalytically Active Light Printed Microstructures.
Adv Mater. 2025 Aug;37(34):e2506663. doi: 10.1002/adma.202506663. Epub 2025 Jun 6.
3
4D fabrication of shape-changing systems for tissue engineering: state of the art and perspectives.
Prog Addit Manuf. 2025;10(4):1913-1943. doi: 10.1007/s40964-024-00743-5. Epub 2024 Aug 12.
4
4D printing polymeric biomaterials for adaptive tissue regeneration.
Bioact Mater. 2025 Feb 22;48:370-399. doi: 10.1016/j.bioactmat.2025.01.033. eCollection 2025 Jun.
5
Emerging brain organoids: 3D models to decipher, identify and revolutionize brain.
Bioact Mater. 2025 Feb 12;47:378-402. doi: 10.1016/j.bioactmat.2025.01.025. eCollection 2025 May.
6
Extrusion bioprinting: meeting the promise of human tissue biofabrication?
Prog Biomed Eng (Bristol). 2025 Mar 11;7(2):023001. doi: 10.1088/2516-1091/adb254.
7
Insights into Advances and Applications of Biomaterials for Nerve Tissue Injuries and Neurodegenerative Disorders.
Macromol Biosci. 2024 Dec;24(12):e2400150. doi: 10.1002/mabi.202400150. Epub 2024 Sep 30.
8
Human Brain In Vitro Model for Pathogen Infection-Related Neurodegeneration Study.
Int J Mol Sci. 2024 Jun 13;25(12):6522. doi: 10.3390/ijms25126522.
9
Advances in current models on neurodegenerative diseases.
Front Bioeng Biotechnol. 2023 Nov 6;11:1260397. doi: 10.3389/fbioe.2023.1260397. eCollection 2023.
10
Translational biomaterials of four-dimensional bioprinting for tissue regeneration.
Biofabrication. 2023 Oct 9;16(1):012001. doi: 10.1088/1758-5090/acfdd0.

本文引用的文献

1
Water-based synthesis and processing of novel biodegradable elastomers for medical applications.
J Mater Chem B. 2014 Aug 21;2(31):5083-5092. doi: 10.1039/c4tb00572d. Epub 2014 Jul 2.
2
Bio-Based Polymers for 3D Printing of Bioscaffolds.
Polym Rev (Phila Pa). 2018;58(4):668-687. doi: 10.1080/15583724.2018.1484761. Epub 2018 Sep 25.
3
Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering.
Adv Biosyst. 2018 Sep;2(9). doi: 10.1002/adbi.201800101. Epub 2018 Jul 11.
5
Human Brain Organoids on a Chip Reveal the Physics of Folding.
Nat Phys. 2018 May;14(5):515-522. doi: 10.1038/s41567-018-0046-7. Epub 2018 Feb 19.
6
Disorganized Gyrification Network Properties During the Transition to Psychosis.
JAMA Psychiatry. 2018 Jun 1;75(6):613-622. doi: 10.1001/jamapsychiatry.2018.0391.
8
Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration.
ACS Appl Mater Interfaces. 2018 Mar 14;10(10):8993-9001. doi: 10.1021/acsami.7b18197. Epub 2018 Mar 1.
9
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.
Nature. 2018 Feb 22;554(7693):523-527. doi: 10.1038/nature25742. Epub 2018 Feb 14.
10
4D printing of polymeric materials for tissue and organ regeneration.
Mater Today (Kidlington). 2017 Dec;20(10):577-591. doi: 10.1016/j.mattod.2017.06.005. Epub 2017 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验