Suppr超能文献

一种用于在家族性疾病分析中对发病年龄变化进行建模的时间依赖型逻辑风险函数。

A time-dependent logistic hazard function for modeling variable age of onset in analysis of familial diseases.

作者信息

Abel L, Bonney G E

机构信息

Division of Biostatistics, Howard University Cancer Center, Washington, D.C.

出版信息

Genet Epidemiol. 1990;7(6):391-407. doi: 10.1002/gepi.1370070602.

Abstract

The paper presents an extension of the regressive logistic models proposed by Bonney [Biometrics 42:611-625, 1986], to address the problems of variable age-of-onset and time-dependent covariates in analysis of familial diseases. This goal is achieved by using failure time data analysis methods, and partitioning the time of follow up in K mutually exclusive intervals. The conditional probability of being affected within the kth interval (k = 1...K) given not affected before represents the hazard function in this discrete formulation. A logistic model is used to specify a regression relationship between this hazard function and a set of explanatory variables including genotype, phenotypes of ancestors, and other covariates which can be time dependent. The probability that a given person either becomes affected within the kth interval (i.e., interval k includes age of onset of the person) or remains unaffected by the end of the kth interval (i.e., interval k includes age at examination of the person) are derived from the general results of failure time data analysis and used for the likelihood formulation. This proposed approach can be used in any genetic segregation and linkage analysis in which a penetrance function needs to be defined. Application of the method to familial leprosy data leads to results consistent with our previous analysis performed using the unified mixed model [Abel and Demenais, Am J Hum Genet 42:256-266, 1988], i.e., the presence of a recessive major gene controlling susceptibility to leprosy. Furthermore, a simulation study shows the capability of the new model to detect major gene effects and to provide accurate parameter estimates in a situation of complete ascertainment.

摘要

本文提出了对Bonney[《生物统计学》42:611 - 625, 1986]提出的回归逻辑模型的扩展,以解决家族性疾病分析中发病年龄可变和时间依赖性协变量的问题。通过使用失效时间数据分析方法,并将随访时间划分为K个相互排斥的区间来实现这一目标。在第k个区间(k = 1...K)内给定之前未受影响的情况下受影响的条件概率在这种离散形式中表示风险函数。使用逻辑模型来指定该风险函数与一组解释变量之间的回归关系,这些解释变量包括基因型、祖先的表型以及其他可能随时间变化的协变量。给定个体在第k个区间内受影响(即区间k包括该个体的发病年龄)或在第k个区间结束时仍未受影响(即区间k包括该个体的检查年龄)的概率是从失效时间数据分析的一般结果推导出来的,并用于似然函数的构建。这种提出的方法可用于任何需要定义外显率函数的遗传分离和连锁分析。将该方法应用于家族性麻风病数据,得到的结果与我们之前使用统一混合模型[Abel和Demenais,《美国人类遗传学杂志》42:256 - 266, 1988]进行的分析一致,即存在一个控制麻风病易感性的隐性主基因。此外,一项模拟研究表明,在完全确定的情况下,新模型能够检测主基因效应并提供准确的参数估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验