Institute of Life Sciences & Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Croix du Sud, 1 bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium.
ACS Nano. 2012 Sep 25;6(9):7703-11. doi: 10.1021/nn3025699. Epub 2012 Aug 27.
Bacterial and fungal species produce some of the best-characterized functional amyloids, that is, extracellular fibres that play key roles in mediating adhesion and biofilm formation. Yet, the molecular details underlying their mechanical strength remain poorly understood. Here, we use single-molecule atomic force microscopy to measure the mechanical properties of amyloids formed by Als cell adhesion proteins from the pathogen Candida albicans. We show that stretching Als proteins through their amyloid sequence yields characteristic force signatures corresponding to the mechanical unzipping of β-sheet interactions formed between surface-arrayed Als proteins. The unzipping probability increases with contact time, reflecting the time necessary for optimal inter β-strand associations. These results demonstrate that amyloid interactions provide cohesive strength to a major adhesion protein from a microbial pathogen, thereby strengthening cell adhesion. We suggest that such functional amyloids may represent a generic mechanism for providing mechanical strength to cell adhesion proteins. In nanotechnology, these single-molecule manipulation experiments provide new opportunities to understand the molecular mechanisms driving the cohesion of functional amyloid-based nanostructures.
细菌和真菌物种产生了一些研究得最为透彻的功能性淀粉样蛋白,也就是在介导黏附和生物膜形成中起关键作用的细胞外纤维。然而,其机械强度的分子细节仍知之甚少。在这里,我们使用单分子原子力显微镜来测量来自病原体白色念珠菌的 Als 细胞黏附蛋白形成的淀粉样蛋白的机械性能。我们表明,通过淀粉样蛋白序列拉伸 Als 蛋白会产生特征力信号,对应于在表面排列的 Als 蛋白之间形成的β-折叠相互作用的机械解拉链。解拉链的概率随接触时间而增加,反映了形成最佳的β-链间相互作用所需的时间。这些结果表明,淀粉样蛋白相互作用为微生物病原体的主要黏附蛋白提供了内聚强度,从而增强了细胞黏附。我们认为,这种功能性淀粉样蛋白可能代表了为细胞黏附蛋白提供机械强度的一种通用机制。在纳米技术中,这些单分子操纵实验为理解驱动基于功能性淀粉样蛋白的纳米结构内聚的分子机制提供了新的机会。