Qin Rongrong, Guo Yishun, Ren Hao, Liu Yongchun, Su Hao, Chu Xiaoying, Jin Yingying, Lu Fan, Wang Bailiang, Yang Peng
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
ACS Cent Sci. 2022 Jun 22;8(6):705-717. doi: 10.1021/acscentsci.2c00151. Epub 2022 Jun 1.
The adhesion and modification of wet surfaces by an interfacial adlayer remain a key challenge in chemistry and materials science. Herein, we report a transparent and biocompatible amyloid-like nanofilm that breaks through the hydration layer of a wet surface and achieves strong adhesion with a hydrogel/tissue surface within 2 s. This process is facilitated by fast amyloid-like protein aggregation at the air/water interface and the resultant exposure of hydrophobic groups. The resultant protein nanofilm adhered to a hydrogel surface presents an adhesion strength that is 20 times higher than the maximum friction force between the upper eyelid and eyeball. In addition, the nanofilm exhibits controllable tunability to encapsulate and release functional molecules without significant activity loss. As a result, therapeutic contact lenses (CLs) could be fabricated by adhering the functionalized nanofilm (carrying drug) on the CL surface. These therapeutic CLs display excellent therapeutic efficacy, showing an increase in cyclosporin A (CsA) bioavailability of at least 82% when compared to the commercial pharmacologic treatment for dry eye syndrome. Thus, this work underlines the finding that the bioinspired amyloid-like aggregation of proteins at interfaces drives instant adhesion onto a wet surface, enabling the active loading and controllable release of functional building blocks.
界面吸附层对湿表面的粘附和修饰仍是化学和材料科学中的一项关键挑战。在此,我们报道了一种透明且具有生物相容性的类淀粉样纳米膜,它能突破湿表面的水化层,并在2秒内与水凝胶/组织表面实现强粘附。这一过程通过类淀粉样蛋白在空气/水界面的快速聚集以及由此产生的疏水基团暴露而得以促进。所得的附着在水凝胶表面的蛋白质纳米膜的粘附强度比上眼睑与眼球之间的最大摩擦力高20倍。此外,该纳米膜具有可控的可调性,能够封装和释放功能分子而不会有显著的活性损失。因此,可以通过将功能化纳米膜(携带药物)粘附在隐形眼镜表面来制造治疗性隐形眼镜。这些治疗性隐形眼镜显示出优异的治疗效果,与用于干眼症综合征的商业药物治疗相比,环孢素A(CsA)的生物利用度提高了至少82%。因此,这项工作强调了这样一个发现,即蛋白质在界面上受生物启发的类淀粉样聚集驱动了对湿表面的即时粘附,实现了功能构建块的主动加载和可控释放。