Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20744-9. doi: 10.1073/pnas.1013893107. Epub 2010 Nov 8.
Understanding how cell adhesion proteins form adhesion domains is a key challenge in cell biology. Here, we use single-molecule atomic force microscopy (AFM) to demonstrate the force-induced formation and propagation of adhesion nanodomains in living fungal cells, focusing on the covalently anchored cell-wall protein Als5p from Candida albicans. We show that pulling on single adhesins with AFM tips terminated with specific antibodies triggers the formation of adhesion domains of 100-500 nm and that the force-induced nanodomains propagate over the entire cell surface. Control experiments (with cells lacking Als5p, single-site mutation in the protein, bare tips, and tips modified with irrelevant antibodies) demonstrate that Als5p nanodomains result from protein redistribution triggered by force-induced conformational changes in the initially probed proteins, rather than from nonspecific cell-wall perturbations. Als5p remodeling is independent of cellular metabolic activity because heat-killed cells show the same behavior as live cells. Using AFM and fluorescence microscopy, we also find that nanodomains are formed within ∼30 min and migrate at a speed of ∼20 nm·min(-1), indicating that domain formation and propagation are slow, time-dependent processes. These results demonstrate that mechanical stimuli can trigger adhesion nanodomains in fungal cells and suggest that the force-induced clustering of adhesins may be a mechanism for activating cell adhesion.
了解细胞黏附蛋白如何形成黏附域是细胞生物学的一个关键挑战。在这里,我们使用单分子原子力显微镜(AFM)来证明黏附纳米域在活真菌细胞中的力诱导形成和传播,重点关注来自白色念珠菌的共价锚定细胞壁蛋白 Als5p。我们表明,用 AFM 针尖上带有特定抗体的单黏附蛋白进行拉动会触发 100-500nm 的黏附域的形成,并且力诱导的纳米域会在整个细胞表面传播。对照实验(用缺乏 Als5p 的细胞、蛋白质中的单点突变、裸尖和用不相关的抗体修饰的尖端进行实验)表明,Als5p 纳米域是由最初探测到的蛋白质的力诱导构象变化引发的蛋白质重分布引起的,而不是由非特异性细胞壁扰动引起的。Als5p 的重塑与细胞代谢活性无关,因为热杀死的细胞表现出与活细胞相同的行为。我们还使用 AFM 和荧光显微镜发现,纳米域在约 30 分钟内形成,并以约 20nm·min(-1)的速度迁移,这表明域的形成和传播是缓慢的、依赖时间的过程。这些结果表明,机械刺激可以在真菌细胞中引发黏附纳米域,并表明黏附素的力诱导聚集可能是激活细胞黏附的一种机制。