Suppr超能文献

用于测试牙科材料的可重现性口腔微生物膜模型。

A reproducible oral microcosm biofilm model for testing dental materials.

机构信息

Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.

出版信息

J Appl Microbiol. 2012 Dec;113(6):1540-53. doi: 10.1111/j.1365-2672.2012.05439.x. Epub 2012 Sep 17.

Abstract

AIMS

Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model.

METHODS AND RESULTS

Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite discs were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms was analysed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veillonella. Biofilms from the same donor, grown at different times, clustered together.

CONCLUSIONS

This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries.

SIGNIFICANCE AND IMPACT OF THE STUDY

This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials.

摘要

目的

大多数关于生物膜对牙科材料影响的研究使用的是单一种群生物膜或联合体。直接从唾液或牙菌斑中生长的微宇宙生物膜更加多样化,但难以进行特征描述。我们使用人类口腔微生物鉴定微阵列(HOMIM)来验证可重现的口腔微宇宙模型。

方法和结果

从成年人和儿童中采集唾液和牙菌斑。将羟基磷灰石和牙科复合盘接种唾液或牙菌斑,并在 CDC 生物膜反应器中培养微宇宙生物膜。在后续实验中,反应器会被蔗糖脉冲刺激。通过 HOMIM 对接种物和微宇宙的 DNA 进行 272 种物种的分析。微宇宙包含原始接种物中约 60%的物种。羟基磷灰石和复合材料上生长的生物膜极为相似。蔗糖脉冲会降低多样性和 pH 值,但会增加链球菌和韦荣氏球菌的丰度。来自同一供体、在不同时间生长的生物膜聚集在一起。

结论

该模型产生了可重现的微宇宙生物膜,可代表口腔微生物群。蔗糖诱导的变化与龋齿有关。

研究的意义和影响

这是首次使用 HOMIM 验证可用于研究复杂生物膜对牙科材料影响的口腔微宇宙模型。

相似文献

1
A reproducible oral microcosm biofilm model for testing dental materials.
J Appl Microbiol. 2012 Dec;113(6):1540-53. doi: 10.1111/j.1365-2672.2012.05439.x. Epub 2012 Sep 17.
2
Caries-related plaque microcosm biofilms developed in microplates.
Oral Microbiol Immunol. 2007 Apr;22(2):73-9. doi: 10.1111/j.1399-302X.2007.00323.x.
3
Development and pyrosequencing analysis of an in-vitro oral biofilm model.
BMC Microbiol. 2015 Feb 10;15:24. doi: 10.1186/s12866-015-0364-1.
4
Evidence of an in vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque.
Caries Res. 2017;51(3):188-197. doi: 10.1159/000456015. Epub 2017 Mar 1.
6
Influence of the Inoculum Source on the Cariogenicity of in vitro Microcosm Biofilms.
Caries Res. 2016;50(2):97-103. doi: 10.1159/000443537. Epub 2016 Feb 27.

引用本文的文献

1
Presentation of a new multifunctional oral cavity simulator: the "MOCS".
Braz Oral Res. 2025 Feb 21;39:e022. doi: 10.1590/1807-3107bor-2025.vol39.022. eCollection 2025.
4
An In Vitro Evaluation of the Antimicrobial Efficacy of a Novel Irrigant Using Next-Generation Sequencing.
J Endod. 2024 Sep;50(9):1314-1320.e1. doi: 10.1016/j.joen.2024.05.010. Epub 2024 May 28.
5
Investigation of a novel biofilm model close to the original oral microbiome.
Appl Microbiol Biotechnol. 2024 May 10;108(1):330. doi: 10.1007/s00253-024-13149-8.
6
Effects of glucose and lactate on abundance in a novel multispecies oral biofilm model.
Microbiol Spectr. 2024 Apr 2;12(4):e0371323. doi: 10.1128/spectrum.03713-23. Epub 2024 Feb 20.
7
In Vitro Models Used in the Formation of Root Caries Lesions-A Review of the Literature.
Dent J (Basel). 2023 Nov 26;11(12):269. doi: 10.3390/dj11120269.
8
Evaluating models and assessment techniques for understanding oral biofilm complexity.
Microbiologyopen. 2023 Aug;12(4):e1377. doi: 10.1002/mbo3.1377.
10
Effect of anaerobic or/and microaerophilic atmosphere on microcosm biofilm formation and tooth demineralization.
J Appl Oral Sci. 2023 Jun 1;31:e20220445. doi: 10.1590/1678-7757-2022-0445. eCollection 2023.

本文引用的文献

1
Microbial profiles in saliva from children with and without caries in mixed dentition.
Oral Dis. 2012 Sep;18(6):595-601. doi: 10.1111/j.1601-0825.2012.01915.x. Epub 2012 Mar 28.
2
Quantifying dental biofilm growth using cross-polarization optical coherence tomography.
Lett Appl Microbiol. 2012 Jun;54(6):537-42. doi: 10.1111/j.1472-765X.2012.03243.x. Epub 2012 Apr 10.
5
Microbiota of severe early childhood caries before and after therapy.
J Dent Res. 2011 Nov;90(11):1298-305. doi: 10.1177/0022034511421201. Epub 2011 Aug 25.
6
Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison.
PLoS One. 2011;6(7):e22788. doi: 10.1371/journal.pone.0022788. Epub 2011 Jul 29.
7
Mode of birth delivery affects oral microbiota in infants.
J Dent Res. 2011 Oct;90(10):1183-8. doi: 10.1177/0022034511418973. Epub 2011 Aug 9.
8
Gene regulation in S. mutans: complex control in a complex environment.
J Dent Res. 2012 Feb;91(2):133-41. doi: 10.1177/0022034511415415. Epub 2011 Jul 8.
10
An artificial biofilm induced secondary caries model for in vitro studies.
Aust Dent J. 2011 Mar;56(1):40-7. doi: 10.1111/j.1834-7819.2010.01284.x. Epub 2011 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验