Suppr超能文献

通过深度测序测量阳离子依赖的 DNA 聚合酶保真度图谱。

Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing.

机构信息

Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2012;7(8):e43876. doi: 10.1371/journal.pone.0043876. Epub 2012 Aug 22.

Abstract

High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP) on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases--Dpo4 and Klenow exo(-)--obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn(2+) with a misincorporation rate gain of ∼2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn(2+) and Mg(2+) change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.

摘要

高通量记录嵌入在难以接近的微环境中的信号是一项技术挑战。理想的记录设备应该是一种纳米级机器,能够将广泛的变量定量转化为适合长期存储的分子记录介质,并以数字数据的形式进行方便的读取。我们最近提出了这样一种设备,其中阳离子浓度调节 DNA 聚合酶(DNAP)在已知模板上的错误掺入率,从而使 DNA 序列能够编码有关局部阳离子浓度的信息。在这项工作中,我们量化了 DNAP 错误掺入率对阳离子的敏感性,从而可以通过 DNA 测序进行阳离子浓度的间接读取。使用多重深度测序,我们量化了两种 DNA 聚合酶(Dpo4 和 Klenow exo(-))的错误掺入特性,从而获得了模板中所有位置的错误掺入概率和碱基选择性。我们发现 Dpo4 是 Mn(2+)的 DNA 记录设备,错误掺入率增益约为 2%/mM。这种错误掺入率的调制是模板碱基的选择性:在测试范围内,Dpo4 对模板 T 的错误掺入概率增加了超过 50 倍,而其他模板碱基受影响较小。此外,阳离子浓度是错误掺入的缩放因子:在给定的模板碱基上,Mn(2+)和 Mg(2+)改变了整体错误掺入率,但不改变进入的错误掺入核苷酸的相对频率。DNAP 错误掺入的离子依赖性的表征是将其重新用作分子记录设备的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90ae/3425509/116d246d4f97/pone.0043876.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验