Suppr超能文献

一种从胎鼠内脏器官中通过荧光激活细胞分选(FACS)分离自主神经祖细胞的优化程序。

An optimized procedure for fluorescence-activated cell sorting (FACS) isolation of autonomic neural progenitors from visceral organs of fetal mice.

作者信息

Buehler Dennis P, Wiese Carrie B, Skelton S B, Southard-Smith E Michelle

机构信息

Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, USA.

出版信息

J Vis Exp. 2012 Aug 17(66):e4188. doi: 10.3791/4188.

Abstract

During development neural crest (NC)-derived neuronal progenitors migrate away from the neural tube to form autonomic ganglia in visceral organs like the intestine and lower urinary tract. Both during development and in mature tissues these cells are often widely dispersed throughout tissues so that isolation of discrete populations using methods like laser capture micro-dissection is difficult. They can however be directly visualized by expression of fluorescent reporters driven from regulatory regions of neuron-specific genes like Tyrosine hydroxylase (TH). We describe a method optimized for high yields of viable TH+ neuronal progenitors from fetal mouse visceral tissues, including intestine and lower urogenital tract (LUT), based on dissociation and fluorescence-activated cell sorting (FACS). The Th gene encodes the rate-limiting enzyme for production of catecholamines. Enteric neuronal progenitors begin to express TH during their migration in the fetal intestine and TH is also present in a subset of adult pelvic ganglia neurons . The first appearance of this lineage and the distribution of these neurons in other aspects of the LUT, and their isolation has not been described. Neuronal progenitors expressing TH can be readily visualized by expression of EGFP in mice carrying the transgene construct Tg(Th-EGFP)DJ76Gsat/Mmnc. We imaged expression of this transgene in fetal mice to document the distribution of TH+ cells in the developing LUT at 15.5 days post coitus (dpc), designating the morning of plug detection as 0.5 dpc, and observed that a subset of neuronal progenitors in the coalescing pelvic ganglia express EGFP. To isolate LUT TH+ neuronal progenitors, we optimized methods that were initially used to purify neural crest stem cells from fetal mouse intestine. Prior efforts to isolate NC-derived populations relied upon digestion with a cocktail of collagenase and trypsin to obtain cell suspensions for flow cytometry. In our hands these methods produced cell suspensions from the LUT with relatively low viability. Given the already low incidence of neuronal progenitors in fetal LUT tissues, we set out to optimize dissociation methods such that cell survival in the final dissociates would be increased. We determined that gentle dissociation in Accumax (Innovative Cell Technologies, Inc), manual filtering, and flow sorting at low pressures allowed us to achieve consistently greater survival (>70% of total cells) with subsequent yields of neuronal progenitors sufficient for downstream analysis. The method we describe can be broadly applied to isolate a variety of neuronal populations from either fetal or adult murine tissues.

摘要

在发育过程中,神经嵴(NC)衍生的神经元祖细胞从神经管迁移出来,在肠道和下尿路等内脏器官中形成自主神经节。在发育过程中和成熟组织中,这些细胞通常广泛分散在整个组织中,因此使用激光捕获显微切割等方法分离离散的细胞群体很困难。然而,通过由酪氨酸羟化酶(TH)等神经元特异性基因的调控区域驱动的荧光报告基因的表达,可以直接观察到它们。我们描述了一种基于解离和荧光激活细胞分选(FACS),从胎鼠内脏组织(包括肠道和下泌尿生殖道(LUT))中高效获取有活力的TH+神经元祖细胞的优化方法。Th基因编码儿茶酚胺生成的限速酶。肠神经元祖细胞在胎儿肠道迁移过程中开始表达TH,TH也存在于成年盆腔神经节神经元的一个亚群中。该谱系的首次出现以及这些神经元在LUT其他方面的分布,以及它们的分离尚未见报道。通过在携带转基因构建体Tg(Th-EGFP)DJ76Gsat/Mmnc的小鼠中表达EGFP,可以很容易地观察到表达TH的神经元祖细胞。我们对胎鼠中该转基因的表达进行成像,以记录交配后15.5天(dpc)发育中的LUT中TH+细胞的分布,将检测到栓子的早晨定为0.5 dpc,并观察到合并的盆腔神经节中的一部分神经元祖细胞表达EGFP。为了分离LUT TH+神经元祖细胞,我们优化了最初用于从胎鼠肠道中纯化神经嵴干细胞的方法。先前分离NC衍生群体的努力依赖于用胶原酶和胰蛋白酶混合物消化,以获得用于流式细胞术的细胞悬液。在我们手中,这些方法从LUT产生的细胞悬液活力相对较低。鉴于胎儿LUT组织中神经元祖细胞的发生率本来就低,我们着手优化解离方法,以使最终解离物中的细胞存活率提高。我们确定,在Accumax(创新细胞技术公司)中进行温和解离、手动过滤以及在低压下进行流式分选,使我们能够始终获得更高的存活率(占总细胞的>70%),随后获得的神经元祖细胞产量足以进行下游分析。我们描述的方法可广泛应用于从胎儿或成年小鼠组织中分离各种神经元群体。

相似文献

2
3
Isolation of genetically manipulated neural progenitors and immature neurons from embryonic mouse neocortex by FACS.
STAR Protoc. 2021 May 17;2(2):100540. doi: 10.1016/j.xpro.2021.100540. eCollection 2021 Jun 18.
4
A genome-wide screen to identify transcription factors expressed in pelvic Ganglia of the lower urinary tract.
Front Neurosci. 2012 Sep 12;6:130. doi: 10.3389/fnins.2012.00130. eCollection 2012.
7
8
Isolation and live imaging of enteric progenitors based on Sox10-Histone2BVenus transgene expression.
Genesis. 2011 Jul;49(7):599-618. doi: 10.1002/dvg.20748. Epub 2011 Jun 21.
9
Migration pathways of sacral neural crest during development of lower urogenital tract innervation.
Dev Biol. 2017 Sep 1;429(1):356-369. doi: 10.1016/j.ydbio.2017.04.011. Epub 2017 Apr 25.

引用本文的文献

2
A Uchl1-Histone2BmCherry:GFP-gpi BAC transgene for imaging neuronal progenitors.
Genesis. 2013 Dec;51(12):852-61. doi: 10.1002/dvg.22716. Epub 2013 Oct 21.
3
Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research.
Front Neurosci. 2013 Jul 31;7:134. doi: 10.3389/fnins.2013.00134. eCollection 2013.

本文引用的文献

1
Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut.
J Clin Invest. 2011 Sep;121(9):3398-411. doi: 10.1172/JCI58186. Epub 2011 Aug 25.
2
A conditional knockout resource for the genome-wide study of mouse gene function.
Nature. 2011 Jun 15;474(7351):337-42. doi: 10.1038/nature10163.
3
The GUDMAP database--an online resource for genitourinary research.
Development. 2011 Jul;138(13):2845-53. doi: 10.1242/dev.063594.
4
Isolation and live imaging of enteric progenitors based on Sox10-Histone2BVenus transgene expression.
Genesis. 2011 Jul;49(7):599-618. doi: 10.1002/dvg.20748. Epub 2011 Jun 21.
6
9
Neural crest cell outgrowth cultures and the analysis of cell migration.
Methods Mol Biol. 2000;137:201-11. doi: 10.1385/1-59259-066-7:201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验