Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
J Neurophysiol. 2012 Nov;108(10):2837-45. doi: 10.1152/jn.00366.2012. Epub 2012 Aug 29.
Owls use interaural time differences (ITDs) to locate a sound source. They compute ITD in a specialized neural circuit that consists of axonal delay lines from the cochlear nucleus magnocellularis (NM) and coincidence detectors in the nucleus laminaris (NL). Recent physiological recordings have shown that tonal stimuli induce oscillatory membrane potentials in NL neurons (Funabiki K, Ashida G, Konishi M. J Neurosci 31: 15245-15256, 2011). The amplitude of these oscillations varies with ITD and is strongly correlated to the firing rate. The oscillation, termed the sound analog potential, has the same frequency as the stimulus tone and is presumed to originate from phase-locked synaptic inputs from NM fibers. To investigate how these oscillatory membrane potentials are generated, we applied recently developed signal-to-noise ratio (SNR) analysis techniques (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010) to the intracellular waveforms obtained in vivo. Our theoretical prediction of the band-limited SNRs agreed with experimental data for mid- to high-frequency (>2 kHz) NL neurons. For low-frequency (≤2 kHz) NL neurons, however, measured SNRs were lower than theoretical predictions. These results suggest that the number of independent NM fibers converging onto each NL neuron and/or the population-averaged degree of phase-locking of the NM fibers could be significantly smaller in the low-frequency NL region than estimated for higher best-frequency NL.
猫头鹰利用两耳时间差(ITD)来定位声源。它们在一个专门的神经回路中计算 ITD,该回路由来自耳蜗核的轴突延迟线和核层(NL)中的符合检测器组成。最近的生理记录表明,音调刺激会在 NL 神经元中诱导振荡膜电位(Funabiki K、Ashida G、Konishi M. J Neurosci 31: 15245-15256, 2011)。这些振荡的幅度随 ITD 而变化,与放电率强烈相关。这种振荡称为声音模拟电位,其频率与刺激音调相同,据推测源自 NM 纤维的锁相突触输入。为了研究这些振荡膜电位是如何产生的,我们将最近开发的信噪比(SNR)分析技术(Kuokkanen PT、Wagner H、Ashida G、Carr CE、Kempter R. J Neurophysiol 104: 2274-2290, 2010)应用于体内获得的细胞内波形。我们对带限 SNR 的理论预测与中高频(>2 kHz)NL 神经元的实验数据一致。然而,对于低频(≤2 kHz)NL 神经元,测量的 SNR 低于理论预测。这些结果表明,与较高最佳频率 NL 相比,低频 NL 区域中每个 NL 神经元汇聚的 NM 纤维数量和/或 NM 纤维的群体平均锁相程度可能显著较小。